{"title":"基于工人相似性的众包噪声校正","authors":"Yufei Hu , Liangxiao Jiang , Wenjun Zhang","doi":"10.1016/j.is.2023.102321","DOIUrl":null,"url":null,"abstract":"<div><p>Crowdsourcing offers a cost-effective way to obtain multiple noisy labels for each instance by employing multiple crowd workers. Then label integration is used to infer its integrated label. Despite the effectiveness of label integration algorithms, there always remains a certain degree of noise in the integrated labels. Thus noise correction algorithms have been proposed to reduce the impact of noise. However, almost all existing noise correction algorithms only focus on individual workers but ignore the correlations among workers. In this paper, we argue that similar workers have similar annotating skills and tend to be consistent in annotating same or similar instances. Based on this premise, we propose a novel noise correction algorithm called worker similarity-based noise correction (WSNC). At first, WSNC exploits the annotating information of similar workers on similar instances to estimate the quality of each label annotated by each worker on each instance. Then, WSNC re-infers the integrated label of each instance based on the qualities of its multiple noisy labels. Finally, WSNC considers the instance whose re-inferred integrated label differs from its original integrated label as a noise instance and further corrects it. The extensive experiments on a large number of simulated and three real-world crowdsourced datasets verify the effectiveness of WSNC.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"121 ","pages":"Article 102321"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Worker similarity-based noise correction for crowdsourcing\",\"authors\":\"Yufei Hu , Liangxiao Jiang , Wenjun Zhang\",\"doi\":\"10.1016/j.is.2023.102321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Crowdsourcing offers a cost-effective way to obtain multiple noisy labels for each instance by employing multiple crowd workers. Then label integration is used to infer its integrated label. Despite the effectiveness of label integration algorithms, there always remains a certain degree of noise in the integrated labels. Thus noise correction algorithms have been proposed to reduce the impact of noise. However, almost all existing noise correction algorithms only focus on individual workers but ignore the correlations among workers. In this paper, we argue that similar workers have similar annotating skills and tend to be consistent in annotating same or similar instances. Based on this premise, we propose a novel noise correction algorithm called worker similarity-based noise correction (WSNC). At first, WSNC exploits the annotating information of similar workers on similar instances to estimate the quality of each label annotated by each worker on each instance. Then, WSNC re-infers the integrated label of each instance based on the qualities of its multiple noisy labels. Finally, WSNC considers the instance whose re-inferred integrated label differs from its original integrated label as a noise instance and further corrects it. The extensive experiments on a large number of simulated and three real-world crowdsourced datasets verify the effectiveness of WSNC.</p></div>\",\"PeriodicalId\":50363,\"journal\":{\"name\":\"Information Systems\",\"volume\":\"121 \",\"pages\":\"Article 102321\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306437923001576\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437923001576","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Worker similarity-based noise correction for crowdsourcing
Crowdsourcing offers a cost-effective way to obtain multiple noisy labels for each instance by employing multiple crowd workers. Then label integration is used to infer its integrated label. Despite the effectiveness of label integration algorithms, there always remains a certain degree of noise in the integrated labels. Thus noise correction algorithms have been proposed to reduce the impact of noise. However, almost all existing noise correction algorithms only focus on individual workers but ignore the correlations among workers. In this paper, we argue that similar workers have similar annotating skills and tend to be consistent in annotating same or similar instances. Based on this premise, we propose a novel noise correction algorithm called worker similarity-based noise correction (WSNC). At first, WSNC exploits the annotating information of similar workers on similar instances to estimate the quality of each label annotated by each worker on each instance. Then, WSNC re-infers the integrated label of each instance based on the qualities of its multiple noisy labels. Finally, WSNC considers the instance whose re-inferred integrated label differs from its original integrated label as a noise instance and further corrects it. The extensive experiments on a large number of simulated and three real-world crowdsourced datasets verify the effectiveness of WSNC.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.