P2随机漫步:采用像素点随机漫步的自监督异常检测

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2023-12-02 DOI:10.1007/s40747-023-01285-z
Liujie Hua, Qianqian Qi, Jun Long
{"title":"P2随机漫步:采用像素点随机漫步的自监督异常检测","authors":"Liujie Hua, Qianqian Qi, Jun Long","doi":"10.1007/s40747-023-01285-z","DOIUrl":null,"url":null,"abstract":"<p>In the domain of intelligent manufacturing, automatic anomaly detection plays a pivotal role and holds great significance for improving production efficiency and product quality. However, the scarcity and uncertainty of anomalous data pose significant challenges in this field. Data augmentation methods, such as Cutout, which are widely adopted in existing methodologies, tend to generate patterned data, leading to biased data and compromised detection performance. To deal with this issue, we propose an approach termed self-supervised anomaly detection with pixel-point random walk (P2 Random Walk), which combines data augmentation and Siamese neural networks. We develop a pixel-level data augmentation technique to enhance the randomness of generated data and establish a two-stage anomaly classification framework. The effectiveness of the P2 Random Walk method has been demonstrated on the MVTec dataset, achieving an AUROC of 96.2% and 96.3% for classification and segmentation, respectively, by using only data augmentation-based techniques. Specifically, our method outperforms other state-of-the-art methods in several categories, improving the AUROC for classification and segmentation by 0.5% and 0.3%, respectively, which demonstrates the high performance and strong academic value of our method in anomaly detection tasks.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":" 895","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"P2 random walk: self-supervised anomaly detection with pixel-point random walk\",\"authors\":\"Liujie Hua, Qianqian Qi, Jun Long\",\"doi\":\"10.1007/s40747-023-01285-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the domain of intelligent manufacturing, automatic anomaly detection plays a pivotal role and holds great significance for improving production efficiency and product quality. However, the scarcity and uncertainty of anomalous data pose significant challenges in this field. Data augmentation methods, such as Cutout, which are widely adopted in existing methodologies, tend to generate patterned data, leading to biased data and compromised detection performance. To deal with this issue, we propose an approach termed self-supervised anomaly detection with pixel-point random walk (P2 Random Walk), which combines data augmentation and Siamese neural networks. We develop a pixel-level data augmentation technique to enhance the randomness of generated data and establish a two-stage anomaly classification framework. The effectiveness of the P2 Random Walk method has been demonstrated on the MVTec dataset, achieving an AUROC of 96.2% and 96.3% for classification and segmentation, respectively, by using only data augmentation-based techniques. Specifically, our method outperforms other state-of-the-art methods in several categories, improving the AUROC for classification and segmentation by 0.5% and 0.3%, respectively, which demonstrates the high performance and strong academic value of our method in anomaly detection tasks.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\" 895\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-023-01285-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-023-01285-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在智能制造领域,异常自动检测起着举足轻重的作用,对提高生产效率和产品质量具有重要意义。然而,异常数据的稀缺性和不确定性给这一领域带来了重大挑战。在现有方法中广泛采用的数据增强方法,如Cutout,往往会生成模式数据,导致数据偏差和检测性能受损。为了解决这个问题,我们提出了一种结合数据增强和暹罗神经网络的基于像素点随机行走的自监督异常检测方法(P2 random walk)。我们开发了一种像素级数据增强技术来增强生成数据的随机性,并建立了一个两阶段异常分类框架。P2 Random Walk方法的有效性已经在MVTec数据集上得到了验证,仅使用基于数据增强的技术,分类和分割的AUROC分别达到96.2%和96.3%。具体来说,我们的方法在多个类别中都优于其他最先进的方法,分类和分割的AUROC分别提高了0.5%和0.3%,这表明我们的方法在异常检测任务中的高性能和强大的学术价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P2 random walk: self-supervised anomaly detection with pixel-point random walk

In the domain of intelligent manufacturing, automatic anomaly detection plays a pivotal role and holds great significance for improving production efficiency and product quality. However, the scarcity and uncertainty of anomalous data pose significant challenges in this field. Data augmentation methods, such as Cutout, which are widely adopted in existing methodologies, tend to generate patterned data, leading to biased data and compromised detection performance. To deal with this issue, we propose an approach termed self-supervised anomaly detection with pixel-point random walk (P2 Random Walk), which combines data augmentation and Siamese neural networks. We develop a pixel-level data augmentation technique to enhance the randomness of generated data and establish a two-stage anomaly classification framework. The effectiveness of the P2 Random Walk method has been demonstrated on the MVTec dataset, achieving an AUROC of 96.2% and 96.3% for classification and segmentation, respectively, by using only data augmentation-based techniques. Specifically, our method outperforms other state-of-the-art methods in several categories, improving the AUROC for classification and segmentation by 0.5% and 0.3%, respectively, which demonstrates the high performance and strong academic value of our method in anomaly detection tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Large-scale multiobjective competitive swarm optimizer algorithm based on regional multidirectional search Towards fairness-aware multi-objective optimization Low-frequency spectral graph convolution networks with one-hop connections information for personalized tag recommendation A decentralized feedback-based consensus model considering the consistency maintenance and readability of probabilistic linguistic preference relations for large-scale group decision-making A dynamic preference recommendation model based on spatiotemporal knowledge graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1