Jicheng Li
(, ), Hongling Ye
(, ), Nan Wei
(, ), Yongjia Dong
(, )
{"title":"基于reunet的最小顺应性高效多材料拓扑优化设计涉及生成对抗网络","authors":"Jicheng Li \n (, ), Hongling Ye \n (, ), Nan Wei \n (, ), Yongjia Dong \n (, )","doi":"10.1007/s10409-023-23185-x","DOIUrl":null,"url":null,"abstract":"<div><p>Topology optimization is a common approach for material distribution in continuous structure due to its rigorous mathematical theory. However, with the increase of material types in design domain, the computational efficiency of traditional topology optimization for multiple materials problem is greatly decreased. In this paper, a novel deep learning-based topology optimization method is proposed to achieve multi-material structural design for improving computational efficiency. A large number of multi-material topological configurations are simulated by solid isotropic material with penalization (SIMP), to construct multi-material topology optimization dataset. Subsequently, ResUNet involved generative adversarial network (ResUNet-GAN) is developed for high-dimensional mapping from design parameters to the corresponding multi-material topological configuration. Finally, the ResUNet-GAN, trained by the multi-material dataset, is utilized to design multi-material topological configuration. Numerical simulations verify that the well-trained ResUNet-GAN is successfully applied to three types of cases: the cantilever beam with double materials, the cantilever beam with triple materials, and the half-MBB with triple materials. The deep learning-based topology optimization approach is superior to the conventional methods in terms of higher computational efficiency, performing the potential of such a data-driven method to accelerate the calculation of structural optimization design.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient multi-material topology optimization design with minimum compliance based on ResUNet involved generative adversarial network\",\"authors\":\"Jicheng Li \\n (, ), Hongling Ye \\n (, ), Nan Wei \\n (, ), Yongjia Dong \\n (, )\",\"doi\":\"10.1007/s10409-023-23185-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Topology optimization is a common approach for material distribution in continuous structure due to its rigorous mathematical theory. However, with the increase of material types in design domain, the computational efficiency of traditional topology optimization for multiple materials problem is greatly decreased. In this paper, a novel deep learning-based topology optimization method is proposed to achieve multi-material structural design for improving computational efficiency. A large number of multi-material topological configurations are simulated by solid isotropic material with penalization (SIMP), to construct multi-material topology optimization dataset. Subsequently, ResUNet involved generative adversarial network (ResUNet-GAN) is developed for high-dimensional mapping from design parameters to the corresponding multi-material topological configuration. Finally, the ResUNet-GAN, trained by the multi-material dataset, is utilized to design multi-material topological configuration. Numerical simulations verify that the well-trained ResUNet-GAN is successfully applied to three types of cases: the cantilever beam with double materials, the cantilever beam with triple materials, and the half-MBB with triple materials. The deep learning-based topology optimization approach is superior to the conventional methods in terms of higher computational efficiency, performing the potential of such a data-driven method to accelerate the calculation of structural optimization design.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":7109,\"journal\":{\"name\":\"Acta Mechanica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10409-023-23185-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-023-23185-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Efficient multi-material topology optimization design with minimum compliance based on ResUNet involved generative adversarial network
Topology optimization is a common approach for material distribution in continuous structure due to its rigorous mathematical theory. However, with the increase of material types in design domain, the computational efficiency of traditional topology optimization for multiple materials problem is greatly decreased. In this paper, a novel deep learning-based topology optimization method is proposed to achieve multi-material structural design for improving computational efficiency. A large number of multi-material topological configurations are simulated by solid isotropic material with penalization (SIMP), to construct multi-material topology optimization dataset. Subsequently, ResUNet involved generative adversarial network (ResUNet-GAN) is developed for high-dimensional mapping from design parameters to the corresponding multi-material topological configuration. Finally, the ResUNet-GAN, trained by the multi-material dataset, is utilized to design multi-material topological configuration. Numerical simulations verify that the well-trained ResUNet-GAN is successfully applied to three types of cases: the cantilever beam with double materials, the cantilever beam with triple materials, and the half-MBB with triple materials. The deep learning-based topology optimization approach is superior to the conventional methods in terms of higher computational efficiency, performing the potential of such a data-driven method to accelerate the calculation of structural optimization design.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics