全基因组测序(WGS)作为儿童b细胞ALL的独立检测的确认性诊断价值:NOPHO试验队列的结果

Jaime Garcia-Heras
{"title":"全基因组测序(WGS)作为儿童b细胞ALL的独立检测的确认性诊断价值:NOPHO试验队列的结果","authors":"Jaime Garcia-Heras","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The latest study with whole genome sequencing (WGS) in pediatric B-ALL validated its use as a standalone test to detect underlying clinically significant genetic abnormalities (Rezayee et al., 2023). This was a retrospective molecular survey in bone marrows previously collected and stored from 88 patients who were enrolled in NOPHO trials. The testing was done through 150 bp paired-end WGS applied to a paired analysis of leukemia-germline samples (L-N) (n=64), and to the analysis of leukemia-only samples (L) (n=88). The results demonstrated a full concordance between both WGS approaches and between the results from WGS and previous standard of care tests (SOCTs). All the mandatory aberrations that require testing in the current ALLTogether trial protocol were identified in 38 patients. In addition, WGS accurately identified the majority of aberrations characteristic of B-other ALL (35/36 cases), copy number abnormalities (CNAs) in eight critical genes or regions, CNAs that characterize the IKZF1plus profile, and the abnormalities in patients with Down syndrome. An adapted methodology was necessary for the detection of DUX4::IGH rearrangements in four patients. A comparison between sequencing coverages of 90X and 30X demonstrated that a lower 30X coverage was sufficient to detect all the relevant abnormalities. This successful testing was accomplished through filtering of WGS data focusing on just genes and genomic regions that are routinely implicated in pediatric B-ALL. As a result, it simplified the extraction of data and facilitated the interpretation of results. Overall, the precise identification of abnormalities that was accomplished by WGS allowed the assignment of patients to distinct genetic subtypes. The conclusion of this study was that WGS is quite reliable and can replace the use of SOCTs to profile pediatric B-ALL.</p>","PeriodicalId":73975,"journal":{"name":"Journal of the Association of Genetic Technologists","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Confirmatory Diagnostic Value of Whole Genome Sequencing (WGS) as a Standalone Test for Childhood B-cell ALL: The Results of a NOPHO Trials Cohort.\",\"authors\":\"Jaime Garcia-Heras\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The latest study with whole genome sequencing (WGS) in pediatric B-ALL validated its use as a standalone test to detect underlying clinically significant genetic abnormalities (Rezayee et al., 2023). This was a retrospective molecular survey in bone marrows previously collected and stored from 88 patients who were enrolled in NOPHO trials. The testing was done through 150 bp paired-end WGS applied to a paired analysis of leukemia-germline samples (L-N) (n=64), and to the analysis of leukemia-only samples (L) (n=88). The results demonstrated a full concordance between both WGS approaches and between the results from WGS and previous standard of care tests (SOCTs). All the mandatory aberrations that require testing in the current ALLTogether trial protocol were identified in 38 patients. In addition, WGS accurately identified the majority of aberrations characteristic of B-other ALL (35/36 cases), copy number abnormalities (CNAs) in eight critical genes or regions, CNAs that characterize the IKZF1plus profile, and the abnormalities in patients with Down syndrome. An adapted methodology was necessary for the detection of DUX4::IGH rearrangements in four patients. A comparison between sequencing coverages of 90X and 30X demonstrated that a lower 30X coverage was sufficient to detect all the relevant abnormalities. This successful testing was accomplished through filtering of WGS data focusing on just genes and genomic regions that are routinely implicated in pediatric B-ALL. As a result, it simplified the extraction of data and facilitated the interpretation of results. Overall, the precise identification of abnormalities that was accomplished by WGS allowed the assignment of patients to distinct genetic subtypes. The conclusion of this study was that WGS is quite reliable and can replace the use of SOCTs to profile pediatric B-ALL.</p>\",\"PeriodicalId\":73975,\"journal\":{\"name\":\"Journal of the Association of Genetic Technologists\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Association of Genetic Technologists\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association of Genetic Technologists","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:最新的全基因组测序(WGS)在儿童B-ALL中的研究证实了其作为一种独立测试来检测潜在的临床显著遗传异常的作用(Rezayee等,2023)。这是一项回顾性的分子调查,对88名参加NOPHO试验的患者先前收集和储存的骨髓进行了调查。测试通过150 bp配对端WGS完成,用于白血病-生殖系样本(L- n) (n=64)的配对分析,以及白血病-纯样本(L) (n=88)的分析。结果显示两种WGS方法之间以及WGS结果与以前的护理标准试验(SOCTs)之间完全一致。在38例患者中确定了当前ALLTogether试验方案中需要检测的所有强制性畸变。此外,WGS准确识别了B-other ALL的大多数畸变特征(35/36例)、8个关键基因或区域的拷贝数异常(CNAs)、表征IKZF1plus谱的CNAs以及唐氏综合征患者的异常。需要一种适应的方法来检测4例患者的DUX4::IGH重排。90X和30X的测序覆盖率比较表明,较低的30X覆盖率足以检测到所有相关的异常。这项成功的测试是通过筛选WGS数据来完成的,这些数据只关注与儿童B-ALL常规相关的基因和基因组区域。因此,它简化了数据的提取,方便了结果的解释。总的来说,通过WGS完成的异常的精确识别允许将患者分配到不同的遗传亚型。本研究的结论是,WGS是相当可靠的,可以取代SOCTs来分析儿童B-ALL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Confirmatory Diagnostic Value of Whole Genome Sequencing (WGS) as a Standalone Test for Childhood B-cell ALL: The Results of a NOPHO Trials Cohort.

Objectives: The latest study with whole genome sequencing (WGS) in pediatric B-ALL validated its use as a standalone test to detect underlying clinically significant genetic abnormalities (Rezayee et al., 2023). This was a retrospective molecular survey in bone marrows previously collected and stored from 88 patients who were enrolled in NOPHO trials. The testing was done through 150 bp paired-end WGS applied to a paired analysis of leukemia-germline samples (L-N) (n=64), and to the analysis of leukemia-only samples (L) (n=88). The results demonstrated a full concordance between both WGS approaches and between the results from WGS and previous standard of care tests (SOCTs). All the mandatory aberrations that require testing in the current ALLTogether trial protocol were identified in 38 patients. In addition, WGS accurately identified the majority of aberrations characteristic of B-other ALL (35/36 cases), copy number abnormalities (CNAs) in eight critical genes or regions, CNAs that characterize the IKZF1plus profile, and the abnormalities in patients with Down syndrome. An adapted methodology was necessary for the detection of DUX4::IGH rearrangements in four patients. A comparison between sequencing coverages of 90X and 30X demonstrated that a lower 30X coverage was sufficient to detect all the relevant abnormalities. This successful testing was accomplished through filtering of WGS data focusing on just genes and genomic regions that are routinely implicated in pediatric B-ALL. As a result, it simplified the extraction of data and facilitated the interpretation of results. Overall, the precise identification of abnormalities that was accomplished by WGS allowed the assignment of patients to distinct genetic subtypes. The conclusion of this study was that WGS is quite reliable and can replace the use of SOCTs to profile pediatric B-ALL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Case of a Patient with Therapy-related Core Binding Factor (CBF) Acute Myeloid Leukemia (CBF-AML). The Main Genetic-Molecular Aspects of Penile Cancer. The Molecular Breakthroughs in mRNA Biology and Pharmacology that Paved Progress to Develop Effective mRNA Vaccines Against COVID-19. ETV6::RUNX1-like Acute Lymphoblastic Leukemia. Fanconi Anemia, AML, and MDS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1