雷帕霉素复合物 1 的机制靶点通路有助于粒细胞-巨噬细胞集落刺激因子产生的 T 辅助细胞对小鼠结直肠癌的抗肿瘤作用

IF 2.9 4区 医学 Q3 IMMUNOLOGY Immunological Investigations Pub Date : 2024-02-01 Epub Date: 2023-12-05 DOI:10.1080/08820139.2023.2290631
Hongjian Zhou, Bin Jiang, Yuyuan Qian, Chao Ke
{"title":"雷帕霉素复合物 1 的机制靶点通路有助于粒细胞-巨噬细胞集落刺激因子产生的 T 辅助细胞对小鼠结直肠癌的抗肿瘤作用","authors":"Hongjian Zhou, Bin Jiang, Yuyuan Qian, Chao Ke","doi":"10.1080/08820139.2023.2290631","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The role of granulocyte-macrophage-colony-stimulating factor-producing T helper (ThGM) cells in colorectal cancer (CRC) development remains unclear. This study characterizes the function of ThGM cells in mouse CRC.</p><p><strong>Methods: </strong>Mouse CRC was induced by administrating azoxymethane and dextran sulfate sodium. The presence of ThGM cells in CRC tissues and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in ThGM cells was detected by flow cytometry. The impact of mTORC1 signaling on ThGM cell function was determined by <i>in vitro</i> culture. The effect of ThGM cells on CRC development was evaluated by adoptive transfer assays.</p><p><strong>Results: </strong>ThGM cells, which expressed granulocyte-macrophage-colony-stimulating factor (GM-CSF), accumulated in CRC tissues. mTORC1 signaling is activated in CRC ThGM cells. mTORC1 inhibition by rapamycin suppressed ThGM cell differentiation and proliferation and resulted in the death of differentiating ThGM cells. mTORC1 inhibition in already differentiated ThGM cells did not induce significant cell death but decreased the expression of GM-CSF, interleukin-2, and tumor necrosis factor-alpha while impeding cell proliferation. Furthermore, mTORC1 inhibition diminished the effect of ThGM cells on driving macrophage polarization toward the M1 type, as evidenced by lower expression of pro-inflammatory cytokines, major histocompatibility complex class II molecule, and CD80 in macrophages after co-culture with rapamycin-treated ThGM cells. Lentivirus-mediated knockdown/overexpression of regulatory-associated protein of mTOR (Raptor) confirmed the essential role of mTORC1 in ThGM cell differentiation and function. Adoptively transferred ThGM cells suppressed CRC growth whereas mTORC1 inhibition abolished this effect.</p><p><strong>Conclusion: </strong>mTORC1 is essential for the anti-CRC activity of ThGM cells.</p>","PeriodicalId":13387,"journal":{"name":"Immunological Investigations","volume":" ","pages":"261-280"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mechanistic Target of Rapamycin Complex 1 Pathway Contributes to the Anti-Tumor Effect of Granulocyte-Macrophage-Colony-Stimulating Factor-Producing T Helper Cells in Mouse Colorectal Cancer.\",\"authors\":\"Hongjian Zhou, Bin Jiang, Yuyuan Qian, Chao Ke\",\"doi\":\"10.1080/08820139.2023.2290631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The role of granulocyte-macrophage-colony-stimulating factor-producing T helper (ThGM) cells in colorectal cancer (CRC) development remains unclear. This study characterizes the function of ThGM cells in mouse CRC.</p><p><strong>Methods: </strong>Mouse CRC was induced by administrating azoxymethane and dextran sulfate sodium. The presence of ThGM cells in CRC tissues and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in ThGM cells was detected by flow cytometry. The impact of mTORC1 signaling on ThGM cell function was determined by <i>in vitro</i> culture. The effect of ThGM cells on CRC development was evaluated by adoptive transfer assays.</p><p><strong>Results: </strong>ThGM cells, which expressed granulocyte-macrophage-colony-stimulating factor (GM-CSF), accumulated in CRC tissues. mTORC1 signaling is activated in CRC ThGM cells. mTORC1 inhibition by rapamycin suppressed ThGM cell differentiation and proliferation and resulted in the death of differentiating ThGM cells. mTORC1 inhibition in already differentiated ThGM cells did not induce significant cell death but decreased the expression of GM-CSF, interleukin-2, and tumor necrosis factor-alpha while impeding cell proliferation. Furthermore, mTORC1 inhibition diminished the effect of ThGM cells on driving macrophage polarization toward the M1 type, as evidenced by lower expression of pro-inflammatory cytokines, major histocompatibility complex class II molecule, and CD80 in macrophages after co-culture with rapamycin-treated ThGM cells. Lentivirus-mediated knockdown/overexpression of regulatory-associated protein of mTOR (Raptor) confirmed the essential role of mTORC1 in ThGM cell differentiation and function. Adoptively transferred ThGM cells suppressed CRC growth whereas mTORC1 inhibition abolished this effect.</p><p><strong>Conclusion: </strong>mTORC1 is essential for the anti-CRC activity of ThGM cells.</p>\",\"PeriodicalId\":13387,\"journal\":{\"name\":\"Immunological Investigations\",\"volume\":\" \",\"pages\":\"261-280\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunological Investigations\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08820139.2023.2290631\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820139.2023.2290631","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导言:产生粒细胞-巨噬细胞-集落刺激因子的T辅助细胞(ThGM)在结直肠癌(CRC)发病中的作用仍不清楚。本研究描述了ThGM细胞在小鼠CRC中的功能:方法:通过注射偶氮甲烷和葡聚糖硫酸钠诱导小鼠 CRC。流式细胞术检测了 CRC 组织中 ThGM 细胞的存在以及 ThGM 细胞中雷帕霉素复合体 1(mTORC1)信号的机制靶点。通过体外培养确定了mTORC1信号对ThGM细胞功能的影响。通过采用性转移实验评估了ThGM细胞对CRC发展的影响:雷帕霉素抑制 mTORC1 可抑制 ThGM 细胞的分化和增殖,并导致分化中的 ThGM 细胞死亡。在已经分化的ThGM细胞中抑制mTORC1不会导致细胞明显死亡,但会降低GM-CSF、白细胞介素-2和肿瘤坏死因子-α的表达,同时阻碍细胞增殖。此外,mTORC1抑制还能降低ThGM细胞驱动巨噬细胞向M1型极化的作用,与雷帕霉素处理过的ThGM细胞共培养后,巨噬细胞中促炎性细胞因子、主要组织相容性复合体II类分子和CD80的表达量降低就证明了这一点。慢病毒介导的mTOR调控相关蛋白(Raptor)的敲除/外表达证实了mTORC1在ThGM细胞分化和功能中的重要作用。结论:mTORC1对ThGM细胞的抗CRC活性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Mechanistic Target of Rapamycin Complex 1 Pathway Contributes to the Anti-Tumor Effect of Granulocyte-Macrophage-Colony-Stimulating Factor-Producing T Helper Cells in Mouse Colorectal Cancer.

Introduction: The role of granulocyte-macrophage-colony-stimulating factor-producing T helper (ThGM) cells in colorectal cancer (CRC) development remains unclear. This study characterizes the function of ThGM cells in mouse CRC.

Methods: Mouse CRC was induced by administrating azoxymethane and dextran sulfate sodium. The presence of ThGM cells in CRC tissues and the mechanistic target of rapamycin complex 1 (mTORC1) signaling in ThGM cells was detected by flow cytometry. The impact of mTORC1 signaling on ThGM cell function was determined by in vitro culture. The effect of ThGM cells on CRC development was evaluated by adoptive transfer assays.

Results: ThGM cells, which expressed granulocyte-macrophage-colony-stimulating factor (GM-CSF), accumulated in CRC tissues. mTORC1 signaling is activated in CRC ThGM cells. mTORC1 inhibition by rapamycin suppressed ThGM cell differentiation and proliferation and resulted in the death of differentiating ThGM cells. mTORC1 inhibition in already differentiated ThGM cells did not induce significant cell death but decreased the expression of GM-CSF, interleukin-2, and tumor necrosis factor-alpha while impeding cell proliferation. Furthermore, mTORC1 inhibition diminished the effect of ThGM cells on driving macrophage polarization toward the M1 type, as evidenced by lower expression of pro-inflammatory cytokines, major histocompatibility complex class II molecule, and CD80 in macrophages after co-culture with rapamycin-treated ThGM cells. Lentivirus-mediated knockdown/overexpression of regulatory-associated protein of mTOR (Raptor) confirmed the essential role of mTORC1 in ThGM cell differentiation and function. Adoptively transferred ThGM cells suppressed CRC growth whereas mTORC1 inhibition abolished this effect.

Conclusion: mTORC1 is essential for the anti-CRC activity of ThGM cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Immunological Investigations
Immunological Investigations 医学-免疫学
CiteScore
5.50
自引率
7.10%
发文量
49
审稿时长
3 months
期刊介绍: Disseminating immunological developments on a worldwide basis, Immunological Investigations encompasses all facets of fundamental and applied immunology, including immunohematology and the study of allergies. This journal provides information presented in the form of original research articles and book reviews, giving a truly in-depth examination of the latest advances in molecular and cellular immunology.
期刊最新文献
Differential Expression of Granulysin, MHC Class I-Related Chain A, and Perforin in Serum and Peritoneal Fluid: Immune Dysregulation in Endometriosis-Related Infertility. Serum-Derived Exosomal TBX2-AS1 Exacerbates COPD by Altering the M1/M2 Ratio of Macrophages through Regulating the miR-423-5p/miR-23b-3p Axis. Evaluation of the Immunoadjuvant Effects of miR-155-Chitosan Polyplex on Leishmania major Infected Mice. Combination Effect of Radiotherapy and Targeted Therapy with NK Cell-Based Immunotherapy in head and Neck Squamous Cell Carcinoma. NOD1 Agonist Induces Proliferation and Plasma Cell Differentiation of Mouse B Cells Especially CD23high B Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1