{"title":"重症监护室获得性虚弱的早期检测和评估:全面回顾。","authors":"Hanan Elkalawy, Pavan Sekhar, Wael Abosena","doi":"10.4266/acc.2023.00703","DOIUrl":null,"url":null,"abstract":"<p><p>Intensive care unit-acquired weakness (ICU-AW) is a serious complication in critically ill patients. Therefore, timely and accurate diagnosis and monitoring of ICU-AW are crucial for effectively preventing its associated morbidity and mortality. This article provides a comprehensive review of ICU-AW, focusing on the different methods used for its diagnosis and monitoring. Additionally, it highlights the role of bedside ultrasound in muscle assessment and early detection of ICU-AW. Furthermore, the article explores potential strategies for preventing ICU-AW. Healthcare providers who manage critically ill patients utilize diagnostic approaches such as physical exams, imaging, and assessment tools to identify ICU-AW. However, each method has its own limitations. The diagnosis of ICU-AW needs improvement due to the lack of a consensus on the appropriate approach for its detection. Nevertheless, bedside ultrasound has proven to be the most reliable and cost-effective tool for muscle assessment in the ICU. Combining the Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) II score assessment, and ultrasound can be a convenient approach for the early detection of ICU-AW. This approach can facilitate timely intervention and prevent catastrophic consequences. However, further studies are needed to strengthen the evidence.</p>","PeriodicalId":44118,"journal":{"name":"Acute and Critical Care","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10718497/pdf/","citationCount":"0","resultStr":"{\"title\":\"Early detection and assessment of intensive care unit-acquired weakness: a comprehensive review.\",\"authors\":\"Hanan Elkalawy, Pavan Sekhar, Wael Abosena\",\"doi\":\"10.4266/acc.2023.00703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intensive care unit-acquired weakness (ICU-AW) is a serious complication in critically ill patients. Therefore, timely and accurate diagnosis and monitoring of ICU-AW are crucial for effectively preventing its associated morbidity and mortality. This article provides a comprehensive review of ICU-AW, focusing on the different methods used for its diagnosis and monitoring. Additionally, it highlights the role of bedside ultrasound in muscle assessment and early detection of ICU-AW. Furthermore, the article explores potential strategies for preventing ICU-AW. Healthcare providers who manage critically ill patients utilize diagnostic approaches such as physical exams, imaging, and assessment tools to identify ICU-AW. However, each method has its own limitations. The diagnosis of ICU-AW needs improvement due to the lack of a consensus on the appropriate approach for its detection. Nevertheless, bedside ultrasound has proven to be the most reliable and cost-effective tool for muscle assessment in the ICU. Combining the Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) II score assessment, and ultrasound can be a convenient approach for the early detection of ICU-AW. This approach can facilitate timely intervention and prevent catastrophic consequences. However, further studies are needed to strengthen the evidence.</p>\",\"PeriodicalId\":44118,\"journal\":{\"name\":\"Acute and Critical Care\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10718497/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acute and Critical Care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4266/acc.2023.00703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acute and Critical Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4266/acc.2023.00703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Early detection and assessment of intensive care unit-acquired weakness: a comprehensive review.
Intensive care unit-acquired weakness (ICU-AW) is a serious complication in critically ill patients. Therefore, timely and accurate diagnosis and monitoring of ICU-AW are crucial for effectively preventing its associated morbidity and mortality. This article provides a comprehensive review of ICU-AW, focusing on the different methods used for its diagnosis and monitoring. Additionally, it highlights the role of bedside ultrasound in muscle assessment and early detection of ICU-AW. Furthermore, the article explores potential strategies for preventing ICU-AW. Healthcare providers who manage critically ill patients utilize diagnostic approaches such as physical exams, imaging, and assessment tools to identify ICU-AW. However, each method has its own limitations. The diagnosis of ICU-AW needs improvement due to the lack of a consensus on the appropriate approach for its detection. Nevertheless, bedside ultrasound has proven to be the most reliable and cost-effective tool for muscle assessment in the ICU. Combining the Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) II score assessment, and ultrasound can be a convenient approach for the early detection of ICU-AW. This approach can facilitate timely intervention and prevent catastrophic consequences. However, further studies are needed to strengthen the evidence.