机器学习在相互依存的关键基础设施系统复原力中的应用--系统性文献综述

IF 4.1 3区 工程技术 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Critical Infrastructure Protection Pub Date : 2023-12-04 DOI:10.1016/j.ijcip.2023.100646
Basem A. Alkhaleel
{"title":"机器学习在相互依存的关键基础设施系统复原力中的应用--系统性文献综述","authors":"Basem A. Alkhaleel","doi":"10.1016/j.ijcip.2023.100646","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The resilience of interdependent critical infrastructure systems (ICISs) is critical for the functioning of society and the economy. ICISs such as power grids and telecommunication networks are complex systems characterized by a wide range of interconnections, and disruptions to such systems can cause significant socioeconomic losses. This vital role requires the adaptation of new tools and technologies to improve the modeling of such complex systems and achieve the highest levels of resilience. One of the trending tools in many research fields to model complex systems is </span>machine learning (ML). In this article, a </span>systematic review<span> of the literature on ML applications in ICISs resilience is conducted, considering the protocol of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), to address the lack of knowledge and scattered research articles on the topic. The main objective of this systematic review is to determine the state of the art of ML applications in the area of ICISs resilience engineering by exploring the current literature. The results found were summarized and some of the future opportunities for ML in ICISs resilience applications were outlined to encourage resilience engineering communities to adapt and use ML for various ICISs applications and to utilize its potential.</span></p></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"44 ","pages":"Article 100646"},"PeriodicalIF":4.1000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review\",\"authors\":\"Basem A. Alkhaleel\",\"doi\":\"10.1016/j.ijcip.2023.100646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The resilience of interdependent critical infrastructure systems (ICISs) is critical for the functioning of society and the economy. ICISs such as power grids and telecommunication networks are complex systems characterized by a wide range of interconnections, and disruptions to such systems can cause significant socioeconomic losses. This vital role requires the adaptation of new tools and technologies to improve the modeling of such complex systems and achieve the highest levels of resilience. One of the trending tools in many research fields to model complex systems is </span>machine learning (ML). In this article, a </span>systematic review<span> of the literature on ML applications in ICISs resilience is conducted, considering the protocol of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), to address the lack of knowledge and scattered research articles on the topic. The main objective of this systematic review is to determine the state of the art of ML applications in the area of ICISs resilience engineering by exploring the current literature. The results found were summarized and some of the future opportunities for ML in ICISs resilience applications were outlined to encourage resilience engineering communities to adapt and use ML for various ICISs applications and to utilize its potential.</span></p></div>\",\"PeriodicalId\":49057,\"journal\":{\"name\":\"International Journal of Critical Infrastructure Protection\",\"volume\":\"44 \",\"pages\":\"Article 100646\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Critical Infrastructure Protection\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874548223000598\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548223000598","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

相互依存的关键基础设施系统(ICIS)的复原力对社会和经济的运行至关重要。电网和电信网络等关键基础设施系统是以广泛互连为特征的复杂系统,这些系统的中断会造成重大的社会经济损失。这种重要作用要求采用新的工具和技术来改进这类复杂系统的建模,并实现最高水平的复原力。在许多研究领域,机器学习(ML)是复杂系统建模的趋势工具之一。本文根据《系统综述和元分析首选报告项目》(PRISMA)的规定,对有关 ML 应用于 ICIS 复原力的文献进行了系统综述,以解决有关该主题的知识缺乏和研究文章分散的问题。本系统综述的主要目的是通过探索当前文献,确定智能语言在集成电路信息系统复原力工程领域的应用现状。对所发现的结果进行了总结,并概述了 ML 在 ICISs 复原力应用中的一些未来机遇,以鼓励复原力工程界在 ICISs 的各种应用中调整和使用 ML,并利用其潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review

The resilience of interdependent critical infrastructure systems (ICISs) is critical for the functioning of society and the economy. ICISs such as power grids and telecommunication networks are complex systems characterized by a wide range of interconnections, and disruptions to such systems can cause significant socioeconomic losses. This vital role requires the adaptation of new tools and technologies to improve the modeling of such complex systems and achieve the highest levels of resilience. One of the trending tools in many research fields to model complex systems is machine learning (ML). In this article, a systematic review of the literature on ML applications in ICISs resilience is conducted, considering the protocol of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), to address the lack of knowledge and scattered research articles on the topic. The main objective of this systematic review is to determine the state of the art of ML applications in the area of ICISs resilience engineering by exploring the current literature. The results found were summarized and some of the future opportunities for ML in ICISs resilience applications were outlined to encourage resilience engineering communities to adapt and use ML for various ICISs applications and to utilize its potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Critical Infrastructure Protection
International Journal of Critical Infrastructure Protection COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, MULTIDISCIPLINARY
CiteScore
8.90
自引率
5.60%
发文量
46
审稿时长
>12 weeks
期刊介绍: The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing. The scope of the journal includes, but is not limited to: 1. Analysis of security challenges that are unique or common to the various infrastructure sectors. 2. Identification of core security principles and techniques that can be applied to critical infrastructure protection. 3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures. 4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.
期刊最新文献
FingerCI: Writing industrial process specifications from network traffic Space cybersecurity challenges, mitigation techniques, anticipated readiness, and future directions A tri-level optimization model for interdependent infrastructure network resilience against compound hazard events Digital Twin-assisted anomaly detection for industrial scenarios Impact of Internet and mobile communication on cyber resilience: A multivariate adaptive regression spline modeling approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1