在部分采样数据下估计序列区间分布的方法

IF 3 3区 医学 Q2 INFECTIOUS DISEASES Epidemics Pub Date : 2023-12-01 DOI:10.1016/j.epidem.2023.100733
Kurnia Susvitasari, Paul Tupper, Jessica E. Stockdale, Caroline Colijn
{"title":"在部分采样数据下估计序列区间分布的方法","authors":"Kurnia Susvitasari,&nbsp;Paul Tupper,&nbsp;Jessica E. Stockdale,&nbsp;Caroline Colijn","doi":"10.1016/j.epidem.2023.100733","DOIUrl":null,"url":null,"abstract":"<div><p>The serial interval of an infectious disease is an important variable in epidemiology. It is defined as the period of time between the symptom onset times of the infector and infectee in a direct transmission pair. Under partially sampled data, purported infector–infectee pairs may actually be separated by one or more unsampled cases in between. Misunderstanding such pairs as direct transmissions will result in overestimating the length of serial intervals. On the other hand, two cases that are infected by an unseen third case (known as coprimary transmission) may be classified as a direct transmission pair, leading to an underestimation of the serial interval. Here, we introduce a method to jointly estimate the distribution of serial intervals factoring in these two sources of error. We simultaneously estimate the distribution of the number of unsampled intermediate cases between purported infector–infectee pairs, as well as the fraction of such pairs that are coprimary. We also extend our method to situations where each infectee has multiple possible infectors, and show how to factor this additional source of uncertainty into our estimates. We assess our method’s performance on simulated data sets and find that our method provides consistent and robust estimates. We also apply our method to data from real-life outbreaks of four infectious diseases and compare our results with published results. With similar accuracy, our method of estimating serial interval distribution provides unique advantages, allowing its application in settings of low sampling rates and large population sizes, such as widespread community transmission tracked by routine public health surveillance.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"45 ","pages":"Article 100733"},"PeriodicalIF":3.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436523000695/pdfft?md5=458166bd7330f9768060ac0ef73cebd5&pid=1-s2.0-S1755436523000695-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A method to estimate the serial interval distribution under partially-sampled data\",\"authors\":\"Kurnia Susvitasari,&nbsp;Paul Tupper,&nbsp;Jessica E. Stockdale,&nbsp;Caroline Colijn\",\"doi\":\"10.1016/j.epidem.2023.100733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The serial interval of an infectious disease is an important variable in epidemiology. It is defined as the period of time between the symptom onset times of the infector and infectee in a direct transmission pair. Under partially sampled data, purported infector–infectee pairs may actually be separated by one or more unsampled cases in between. Misunderstanding such pairs as direct transmissions will result in overestimating the length of serial intervals. On the other hand, two cases that are infected by an unseen third case (known as coprimary transmission) may be classified as a direct transmission pair, leading to an underestimation of the serial interval. Here, we introduce a method to jointly estimate the distribution of serial intervals factoring in these two sources of error. We simultaneously estimate the distribution of the number of unsampled intermediate cases between purported infector–infectee pairs, as well as the fraction of such pairs that are coprimary. We also extend our method to situations where each infectee has multiple possible infectors, and show how to factor this additional source of uncertainty into our estimates. We assess our method’s performance on simulated data sets and find that our method provides consistent and robust estimates. We also apply our method to data from real-life outbreaks of four infectious diseases and compare our results with published results. With similar accuracy, our method of estimating serial interval distribution provides unique advantages, allowing its application in settings of low sampling rates and large population sizes, such as widespread community transmission tracked by routine public health surveillance.</p></div>\",\"PeriodicalId\":49206,\"journal\":{\"name\":\"Epidemics\",\"volume\":\"45 \",\"pages\":\"Article 100733\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1755436523000695/pdfft?md5=458166bd7330f9768060ac0ef73cebd5&pid=1-s2.0-S1755436523000695-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755436523000695\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436523000695","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

传染病的序列间隔是流行病学中的一个重要变量。它被定义为一对直接传播中感染者和被感染者的发病时间之间的间隔。在部分采样数据的情况下,所谓的感染者-被感染者对之间实际上可能相隔一个或多个未采样病例。如果误认为这些病例对是直接传播,就会高估序列间隔的长度。另一方面,被未发现的第三个病例感染的两个病例(称为共生传播)可能会被归类为直接传播对,从而导致序列间隔时间被低估。在此,我们引入一种方法来共同估计序列间隔的分布,并将这两种误差来源考虑在内。我们同时估算了声称的感染者-被感染者配对之间未抽样的中间病例数的分布,以及这些配对中属于共生的部分。我们还将方法扩展到了每个受感染者都有多个可能的感染者的情况,并展示了如何将这一额外的不确定性因素考虑到我们的估计中。我们在模拟数据集上评估了我们方法的性能,发现我们的方法提供了一致且稳健的估计值。我们还将我们的方法应用于四种传染病的真实爆发数据,并将我们的结果与已公布的结果进行比较。在相似的准确性下,我们的序列区间分布估算方法具有独特的优势,可应用于抽样率低、人口规模大的环境,如常规公共卫生监测跟踪的广泛社区传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A method to estimate the serial interval distribution under partially-sampled data

The serial interval of an infectious disease is an important variable in epidemiology. It is defined as the period of time between the symptom onset times of the infector and infectee in a direct transmission pair. Under partially sampled data, purported infector–infectee pairs may actually be separated by one or more unsampled cases in between. Misunderstanding such pairs as direct transmissions will result in overestimating the length of serial intervals. On the other hand, two cases that are infected by an unseen third case (known as coprimary transmission) may be classified as a direct transmission pair, leading to an underestimation of the serial interval. Here, we introduce a method to jointly estimate the distribution of serial intervals factoring in these two sources of error. We simultaneously estimate the distribution of the number of unsampled intermediate cases between purported infector–infectee pairs, as well as the fraction of such pairs that are coprimary. We also extend our method to situations where each infectee has multiple possible infectors, and show how to factor this additional source of uncertainty into our estimates. We assess our method’s performance on simulated data sets and find that our method provides consistent and robust estimates. We also apply our method to data from real-life outbreaks of four infectious diseases and compare our results with published results. With similar accuracy, our method of estimating serial interval distribution provides unique advantages, allowing its application in settings of low sampling rates and large population sizes, such as widespread community transmission tracked by routine public health surveillance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemics
Epidemics INFECTIOUS DISEASES-
CiteScore
6.00
自引率
7.90%
发文量
92
审稿时长
140 days
期刊介绍: Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.
期刊最新文献
Forecasting SARS-CoV-2 epidemic dynamic in Poland with the pDyn agent-based model Optimizing spatial distribution of wastewater-based epidemiology to advance health equity Building in-house capabilities in health agencies and outsourcing to academia or industry: Considerations for effective infectious disease modelling. Direct and indirect effects of hepatitis B vaccination in four low- and middle-income countries Modelling plausible scenarios for the Omicron SARS-CoV-2 variant from early-stage surveillance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1