A. V. Avrorin, A. D. Avrorin, V. M. Aynutdinov, V. A. Allakhverdyan, Z. Bardaćhová, I. A. Belolaptikov, I. V. Borina, N. M. Budnev, A. R. Gafarov, K. V. Golubkov, N. S. Gorshkov, T. I. Gress, R. Dvornicky, Zh.-A. M. Dzhilkibaev, V. Y. Dik, G. V. Domogatsky, A. A. Doroshenko, A. N. Dyachok, T. V. Elzhov, D. N. Zaborov, V. K. Kebkal, K. G. Kebkal, V. A. Kozhin, M. M. Kolbin, K. V. Konischev, A. V. Korobchenko, A. P. Koshechkin, M. V. Kruglov, M. K. Kryukov, V. F. Kulepov, Y. M. Malyshkin, M. B. Milenin, R. R. Mirgazov, V. Nazari, D. V. Naumov, D. P. Petukhov, E. N. Pliskovsky, M. I. Rozanov, V. D. Rushay, E. V. Ryabov, G. B. Safronov, D. Seitova, A. E. Sirenko, A. V. Skurikhin, A. G. Solovje, M. N. Sorokovikov, A. P. Stromakov, O. V. Suvorov, V. A. Tabolenko, B. A. Taraschansky, L. Fajt, A. Khatun, E. V. Khramov, B. A. Shaybonov, M. D. Shelepov, F. Simkovic, I. Šteckl, E. Eckerová, Y. V. Yablokova
{"title":"利用外部光学模块串提高贝加尔-GVD 中微子望远镜的灵敏度","authors":"A. V. Avrorin, A. D. Avrorin, V. M. Aynutdinov, V. A. Allakhverdyan, Z. Bardaćhová, I. A. Belolaptikov, I. V. Borina, N. M. Budnev, A. R. Gafarov, K. V. Golubkov, N. S. Gorshkov, T. I. Gress, R. Dvornicky, Zh.-A. M. Dzhilkibaev, V. Y. Dik, G. V. Domogatsky, A. A. Doroshenko, A. N. Dyachok, T. V. Elzhov, D. N. Zaborov, V. K. Kebkal, K. G. Kebkal, V. A. Kozhin, M. M. Kolbin, K. V. Konischev, A. V. Korobchenko, A. P. Koshechkin, M. V. Kruglov, M. K. Kryukov, V. F. Kulepov, Y. M. Malyshkin, M. B. Milenin, R. R. Mirgazov, V. Nazari, D. V. Naumov, D. P. Petukhov, E. N. Pliskovsky, M. I. Rozanov, V. D. Rushay, E. V. Ryabov, G. B. Safronov, D. Seitova, A. E. Sirenko, A. V. Skurikhin, A. G. Solovje, M. N. Sorokovikov, A. P. Stromakov, O. V. Suvorov, V. A. Tabolenko, B. A. Taraschansky, L. Fajt, A. Khatun, E. V. Khramov, B. A. Shaybonov, M. D. Shelepov, F. Simkovic, I. Šteckl, E. Eckerová, Y. V. Yablokova","doi":"10.1134/S0020441223040115","DOIUrl":null,"url":null,"abstract":"<p>Deployment of the deep-sea neutrino telescope Baikal-GVD continues in Lake Baikal. By April 2022, ten telescope clusters, which include 2880 optical modules, were put into operation. One of the urgent tasks of the Baikal project is to study the possibility of increasing the detection efficiency of the detector based on the experience of its operation and the results obtained with other neutrino telescopes in recent years. In this paper, the authors consider a variant of optimizing the telescope configuration by installing an additional string of optical modules between the detector clusters (external string). An experimental version of the external garland was installed in Lake Baikal in April 2022. The paper presents the results from calculations of the efficiency of registration of neutrino events for a new setup configuration, the technical implementation of the system for recording and collecting data from the external garland, and the first results of its full-scale tests in Lake Baikal.</p>","PeriodicalId":587,"journal":{"name":"Instruments and Experimental Techniques","volume":"66 6","pages":"1009 - 1017"},"PeriodicalIF":0.4000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing the Sensitivity of the Baikal-GVD Neutrino Telescope Using External Strings of Optical Modules\",\"authors\":\"A. V. Avrorin, A. D. Avrorin, V. M. Aynutdinov, V. A. Allakhverdyan, Z. Bardaćhová, I. A. Belolaptikov, I. V. Borina, N. M. Budnev, A. R. Gafarov, K. V. Golubkov, N. S. Gorshkov, T. I. Gress, R. Dvornicky, Zh.-A. M. Dzhilkibaev, V. Y. Dik, G. V. Domogatsky, A. A. Doroshenko, A. N. Dyachok, T. V. Elzhov, D. N. Zaborov, V. K. Kebkal, K. G. Kebkal, V. A. Kozhin, M. M. Kolbin, K. V. Konischev, A. V. Korobchenko, A. P. Koshechkin, M. V. Kruglov, M. K. Kryukov, V. F. Kulepov, Y. M. Malyshkin, M. B. Milenin, R. R. Mirgazov, V. Nazari, D. V. Naumov, D. P. Petukhov, E. N. Pliskovsky, M. I. Rozanov, V. D. Rushay, E. V. Ryabov, G. B. Safronov, D. Seitova, A. E. Sirenko, A. V. Skurikhin, A. G. Solovje, M. N. Sorokovikov, A. P. Stromakov, O. V. Suvorov, V. A. Tabolenko, B. A. Taraschansky, L. Fajt, A. Khatun, E. V. Khramov, B. A. Shaybonov, M. D. Shelepov, F. Simkovic, I. Šteckl, E. Eckerová, Y. V. Yablokova\",\"doi\":\"10.1134/S0020441223040115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deployment of the deep-sea neutrino telescope Baikal-GVD continues in Lake Baikal. By April 2022, ten telescope clusters, which include 2880 optical modules, were put into operation. One of the urgent tasks of the Baikal project is to study the possibility of increasing the detection efficiency of the detector based on the experience of its operation and the results obtained with other neutrino telescopes in recent years. In this paper, the authors consider a variant of optimizing the telescope configuration by installing an additional string of optical modules between the detector clusters (external string). An experimental version of the external garland was installed in Lake Baikal in April 2022. The paper presents the results from calculations of the efficiency of registration of neutrino events for a new setup configuration, the technical implementation of the system for recording and collecting data from the external garland, and the first results of its full-scale tests in Lake Baikal.</p>\",\"PeriodicalId\":587,\"journal\":{\"name\":\"Instruments and Experimental Techniques\",\"volume\":\"66 6\",\"pages\":\"1009 - 1017\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instruments and Experimental Techniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0020441223040115\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments and Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0020441223040115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Increasing the Sensitivity of the Baikal-GVD Neutrino Telescope Using External Strings of Optical Modules
Deployment of the deep-sea neutrino telescope Baikal-GVD continues in Lake Baikal. By April 2022, ten telescope clusters, which include 2880 optical modules, were put into operation. One of the urgent tasks of the Baikal project is to study the possibility of increasing the detection efficiency of the detector based on the experience of its operation and the results obtained with other neutrino telescopes in recent years. In this paper, the authors consider a variant of optimizing the telescope configuration by installing an additional string of optical modules between the detector clusters (external string). An experimental version of the external garland was installed in Lake Baikal in April 2022. The paper presents the results from calculations of the efficiency of registration of neutrino events for a new setup configuration, the technical implementation of the system for recording and collecting data from the external garland, and the first results of its full-scale tests in Lake Baikal.
期刊介绍:
Instruments and Experimental Techniques is an international peer reviewed journal that publishes reviews describing advanced methods for physical measurements and techniques and original articles that present techniques for physical measurements, principles of operation, design, methods of application, and analysis of the operation of physical instruments used in all fields of experimental physics and when conducting measurements using physical methods and instruments in astronomy, natural sciences, chemistry, biology, medicine, and ecology.