利用可微谐波加噪声模型对音乐信号进行有效的带宽扩展

IF 1.7 3区 计算机科学 Q2 ACOUSTICS Eurasip Journal on Audio Speech and Music Processing Pub Date : 2023-12-05 DOI:10.1186/s13636-023-00315-5
Pierre-Amaury Grumiaux, Mathieu Lagrange
{"title":"利用可微谐波加噪声模型对音乐信号进行有效的带宽扩展","authors":"Pierre-Amaury Grumiaux, Mathieu Lagrange","doi":"10.1186/s13636-023-00315-5","DOIUrl":null,"url":null,"abstract":"The task of bandwidth extension addresses the generation of missing high frequencies of audio signals based on knowledge of the low-frequency part of the sound. This task applies to various problems, such as audio coding or audio restoration. In this article, we focus on efficient bandwidth extension of monophonic and polyphonic musical signals using a differentiable digital signal processing (DDSP) model. Such a model is composed of a neural network part with relatively few parameters trained to infer the parameters of a differentiable digital signal processing model, which efficiently generates the output full-band audio signal. We first address bandwidth extension of monophonic signals, and then propose two methods to explicitly handle polyphonic signals. The benefits of the proposed models are first demonstrated on monophonic and polyphonic synthetic data against a baseline and a deep-learning-based ResNet model. The models are next evaluated on recorded monophonic and polyphonic data, for a wide variety of instruments and musical genres. We show that all proposed models surpass a higher complexity deep learning model for an objective metric computed in the frequency domain. A MUSHRA listening test confirms the superiority of the proposed approach in terms of perceptual quality.","PeriodicalId":49202,"journal":{"name":"Eurasip Journal on Audio Speech and Music Processing","volume":" 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient bandwidth extension of musical signals using a differentiable harmonic plus noise model\",\"authors\":\"Pierre-Amaury Grumiaux, Mathieu Lagrange\",\"doi\":\"10.1186/s13636-023-00315-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of bandwidth extension addresses the generation of missing high frequencies of audio signals based on knowledge of the low-frequency part of the sound. This task applies to various problems, such as audio coding or audio restoration. In this article, we focus on efficient bandwidth extension of monophonic and polyphonic musical signals using a differentiable digital signal processing (DDSP) model. Such a model is composed of a neural network part with relatively few parameters trained to infer the parameters of a differentiable digital signal processing model, which efficiently generates the output full-band audio signal. We first address bandwidth extension of monophonic signals, and then propose two methods to explicitly handle polyphonic signals. The benefits of the proposed models are first demonstrated on monophonic and polyphonic synthetic data against a baseline and a deep-learning-based ResNet model. The models are next evaluated on recorded monophonic and polyphonic data, for a wide variety of instruments and musical genres. We show that all proposed models surpass a higher complexity deep learning model for an objective metric computed in the frequency domain. A MUSHRA listening test confirms the superiority of the proposed approach in terms of perceptual quality.\",\"PeriodicalId\":49202,\"journal\":{\"name\":\"Eurasip Journal on Audio Speech and Music Processing\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Audio Speech and Music Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13636-023-00315-5\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Audio Speech and Music Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13636-023-00315-5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

带宽扩展的任务是根据声音的低频部分的知识来处理音频信号中缺失的高频的生成。该任务适用于各种问题,如音频编码或音频恢复。在本文中,我们重点研究了利用可微数字信号处理(DDSP)模型对单音和复音音乐信号进行有效的带宽扩展。该模型由一个训练参数相对较少的神经网络部分组成,用于推断可微数字信号处理模型的参数,从而有效地生成输出的全频段音频信号。我们首先讨论了单音信号的带宽扩展,然后提出了两种显式处理复音信号的方法。提出的模型的优点首先在单音和复音合成数据上针对基线和基于深度学习的ResNet模型进行了演示。模型是下一步评估记录单音和复调数据,为各种各样的乐器和音乐流派。我们表明,所有提出的模型都超过了在频域计算的客观度量的更高复杂性深度学习模型。一项MUSHRA听力测试证实了该方法在感知质量方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient bandwidth extension of musical signals using a differentiable harmonic plus noise model
The task of bandwidth extension addresses the generation of missing high frequencies of audio signals based on knowledge of the low-frequency part of the sound. This task applies to various problems, such as audio coding or audio restoration. In this article, we focus on efficient bandwidth extension of monophonic and polyphonic musical signals using a differentiable digital signal processing (DDSP) model. Such a model is composed of a neural network part with relatively few parameters trained to infer the parameters of a differentiable digital signal processing model, which efficiently generates the output full-band audio signal. We first address bandwidth extension of monophonic signals, and then propose two methods to explicitly handle polyphonic signals. The benefits of the proposed models are first demonstrated on monophonic and polyphonic synthetic data against a baseline and a deep-learning-based ResNet model. The models are next evaluated on recorded monophonic and polyphonic data, for a wide variety of instruments and musical genres. We show that all proposed models surpass a higher complexity deep learning model for an objective metric computed in the frequency domain. A MUSHRA listening test confirms the superiority of the proposed approach in terms of perceptual quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasip Journal on Audio Speech and Music Processing
Eurasip Journal on Audio Speech and Music Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.10
自引率
4.20%
发文量
0
审稿时长
12 months
期刊介绍: The aim of “EURASIP Journal on Audio, Speech, and Music Processing” is to bring together researchers, scientists and engineers working on the theory and applications of the processing of various audio signals, with a specific focus on speech and music. EURASIP Journal on Audio, Speech, and Music Processing will be an interdisciplinary journal for the dissemination of all basic and applied aspects of speech communication and audio processes.
期刊最新文献
Compression of room impulse responses for compact storage and fast low-latency convolution Guest editorial: AI for computational audition—sound and music processing Physics-constrained adaptive kernel interpolation for region-to-region acoustic transfer function: a Bayesian approach Physics-informed neural network for volumetric sound field reconstruction of speech signals Optimal sensor placement for the spatial reconstruction of sound fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1