{"title":"联邦计算:概念和挑战的概览","authors":"Akash Bharadwaj, Graham Cormode","doi":"10.1007/s10619-023-07438-w","DOIUrl":null,"url":null,"abstract":"<p>Federated Computation is an emerging area that seeks to provide stronger privacy for user data, by performing large scale, distributed computations where the data remains in the hands of users. Only the necessary summary information is shared, and additional security and privacy tools can be employed to provide strong guarantees of secrecy. The most prominent application of federated computation is in training machine learning models (federated learning), but many additional applications are emerging, more broadly relevant to data management and querying data. This survey gives an overview of federated computation models and algorithms. It includes an introduction to security and privacy techniques and guarantees, and shows how they can be applied to solve a variety of distributed computations providing statistics and insights to distributed data. It also discusses the issues that arise when implementing systems to support federated computation, and open problems for future research.</p>","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"15 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated computation: a survey of concepts and challenges\",\"authors\":\"Akash Bharadwaj, Graham Cormode\",\"doi\":\"10.1007/s10619-023-07438-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Federated Computation is an emerging area that seeks to provide stronger privacy for user data, by performing large scale, distributed computations where the data remains in the hands of users. Only the necessary summary information is shared, and additional security and privacy tools can be employed to provide strong guarantees of secrecy. The most prominent application of federated computation is in training machine learning models (federated learning), but many additional applications are emerging, more broadly relevant to data management and querying data. This survey gives an overview of federated computation models and algorithms. It includes an introduction to security and privacy techniques and guarantees, and shows how they can be applied to solve a variety of distributed computations providing statistics and insights to distributed data. It also discusses the issues that arise when implementing systems to support federated computation, and open problems for future research.</p>\",\"PeriodicalId\":50568,\"journal\":{\"name\":\"Distributed and Parallel Databases\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed and Parallel Databases\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10619-023-07438-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed and Parallel Databases","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10619-023-07438-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Federated computation: a survey of concepts and challenges
Federated Computation is an emerging area that seeks to provide stronger privacy for user data, by performing large scale, distributed computations where the data remains in the hands of users. Only the necessary summary information is shared, and additional security and privacy tools can be employed to provide strong guarantees of secrecy. The most prominent application of federated computation is in training machine learning models (federated learning), but many additional applications are emerging, more broadly relevant to data management and querying data. This survey gives an overview of federated computation models and algorithms. It includes an introduction to security and privacy techniques and guarantees, and shows how they can be applied to solve a variety of distributed computations providing statistics and insights to distributed data. It also discusses the issues that arise when implementing systems to support federated computation, and open problems for future research.
期刊介绍:
Distributed and Parallel Databases publishes papers in all the traditional as well as most emerging areas of database research, including:
Availability and reliability;
Benchmarking and performance evaluation, and tuning;
Big Data Storage and Processing;
Cloud Computing and Database-as-a-Service;
Crowdsourcing;
Data curation, annotation and provenance;
Data integration, metadata Management, and interoperability;
Data models, semantics, query languages;
Data mining and knowledge discovery;
Data privacy, security, trust;
Data provenance, workflows, Scientific Data Management;
Data visualization and interactive data exploration;
Data warehousing, OLAP, Analytics;
Graph data management, RDF, social networks;
Information Extraction and Data Cleaning;
Middleware and Workflow Management;
Modern Hardware and In-Memory Database Systems;
Query Processing and Optimization;
Semantic Web and open data;
Social Networks;
Storage, indexing, and physical database design;
Streams, sensor networks, and complex event processing;
Strings, Texts, and Keyword Search;
Spatial, temporal, and spatio-temporal databases;
Transaction processing;
Uncertain, probabilistic, and approximate databases.