Xite Wang, Chaojin Wang, Mei Bai, Qian Ma, Guanyu Li
{"title":"HTD: MapReduce中异构吞吐量驱动的任务调度算法","authors":"Xite Wang, Chaojin Wang, Mei Bai, Qian Ma, Guanyu Li","doi":"10.1007/s10619-021-07375-6","DOIUrl":null,"url":null,"abstract":"<p>As one of the most popular parallel data processing models, data analysis system MapReduce has been widely used in many fields. Task scheduling is the core module in MapReduce system, and the quality of the scheduling algorithm directly affects the processing capacity of the system. Since new nodes need to be continuously added in the cluster to improve the processing capacity of the cluster, objectively, the heterogeneity of the cluster is caused. Heterogeneous environment is common in practical application scenarios, but there has been little research on task scheduling in heterogeneous environment. For this reason, this paper presents an in-depth study of task scheduling in heterogeneous environment and proposes a new task scheduling algorithm HTD. First, we give a formal definition of the throughput-driven task scheduling problem in a heterogeneous environment. Second, we design the scheduling algorithm HTD, which quickly obtains the completion sequence of a jobs set and optimizes the task scheduling details in heterogeneous environment. Finally, a series of experiments show the efficiency and effectiveness of the algorithm.</p>","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"71 S102","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"HTD: heterogeneous throughput-driven task scheduling algorithm in MapReduce\",\"authors\":\"Xite Wang, Chaojin Wang, Mei Bai, Qian Ma, Guanyu Li\",\"doi\":\"10.1007/s10619-021-07375-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As one of the most popular parallel data processing models, data analysis system MapReduce has been widely used in many fields. Task scheduling is the core module in MapReduce system, and the quality of the scheduling algorithm directly affects the processing capacity of the system. Since new nodes need to be continuously added in the cluster to improve the processing capacity of the cluster, objectively, the heterogeneity of the cluster is caused. Heterogeneous environment is common in practical application scenarios, but there has been little research on task scheduling in heterogeneous environment. For this reason, this paper presents an in-depth study of task scheduling in heterogeneous environment and proposes a new task scheduling algorithm HTD. First, we give a formal definition of the throughput-driven task scheduling problem in a heterogeneous environment. Second, we design the scheduling algorithm HTD, which quickly obtains the completion sequence of a jobs set and optimizes the task scheduling details in heterogeneous environment. Finally, a series of experiments show the efficiency and effectiveness of the algorithm.</p>\",\"PeriodicalId\":50568,\"journal\":{\"name\":\"Distributed and Parallel Databases\",\"volume\":\"71 S102\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed and Parallel Databases\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10619-021-07375-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed and Parallel Databases","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10619-021-07375-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
HTD: heterogeneous throughput-driven task scheduling algorithm in MapReduce
As one of the most popular parallel data processing models, data analysis system MapReduce has been widely used in many fields. Task scheduling is the core module in MapReduce system, and the quality of the scheduling algorithm directly affects the processing capacity of the system. Since new nodes need to be continuously added in the cluster to improve the processing capacity of the cluster, objectively, the heterogeneity of the cluster is caused. Heterogeneous environment is common in practical application scenarios, but there has been little research on task scheduling in heterogeneous environment. For this reason, this paper presents an in-depth study of task scheduling in heterogeneous environment and proposes a new task scheduling algorithm HTD. First, we give a formal definition of the throughput-driven task scheduling problem in a heterogeneous environment. Second, we design the scheduling algorithm HTD, which quickly obtains the completion sequence of a jobs set and optimizes the task scheduling details in heterogeneous environment. Finally, a series of experiments show the efficiency and effectiveness of the algorithm.
期刊介绍:
Distributed and Parallel Databases publishes papers in all the traditional as well as most emerging areas of database research, including:
Availability and reliability;
Benchmarking and performance evaluation, and tuning;
Big Data Storage and Processing;
Cloud Computing and Database-as-a-Service;
Crowdsourcing;
Data curation, annotation and provenance;
Data integration, metadata Management, and interoperability;
Data models, semantics, query languages;
Data mining and knowledge discovery;
Data privacy, security, trust;
Data provenance, workflows, Scientific Data Management;
Data visualization and interactive data exploration;
Data warehousing, OLAP, Analytics;
Graph data management, RDF, social networks;
Information Extraction and Data Cleaning;
Middleware and Workflow Management;
Modern Hardware and In-Memory Database Systems;
Query Processing and Optimization;
Semantic Web and open data;
Social Networks;
Storage, indexing, and physical database design;
Streams, sensor networks, and complex event processing;
Strings, Texts, and Keyword Search;
Spatial, temporal, and spatio-temporal databases;
Transaction processing;
Uncertain, probabilistic, and approximate databases.