{"title":"具有钴(II)嘧啶位点的共价有机框架/碳纳米管复合材料用于双功能氧电催化","authors":"","doi":"10.1016/j.nanoms.2023.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>With characteristics and advantages of functional composite materials, they are commendably adopted in numerous fields especially in oxygen electrocatalysis, which is due to the significant synergies between various components. Herein, a novel bifunctional oxygen electrocatalyst (Co-CNT@COF-Pyr) has been synthesized through in-situ growth of covalent organic frameworks (COFs) layers on the outer surface of highly conductive carbon nanotubes (CNTs) followed by coordination with Co(Ⅱ). For electrocatalytic OER, Co-CNT@COF-Pyr reveals a low overpotential (438 mV) in alkaline electrolyte (1.0 M aqueous solution of KOH) with a current density of 10 mA cm<sup>−2</sup>, which is comparable to most discovered COF-based catalysts. For electrocatalytic ORR, Co-CNT@COF-Pyr exhibits a low H<sub>2</sub>O<sub>2</sub> yield range (9.0 %–10.1 %) and a reaction pathway close to 4e<sup>−</sup> (n = 3.82–3.80) in alkaline electrolyte (0.1 M aqueous solution of KOH) within the test potential range of 0.1–0.6 V vs. RHE, which is superior to most reported COF-based catalysts. Hence, this research could not only offer an innovative insight into the construction of composites, but also facilitate the practical application of renewable fuel cells, closed water cycle, and rechargeable metal-air batteries.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000636/pdfft?md5=538c5b83327b1bbe3d623a36a5742ca5&pid=1-s2.0-S2589965123000636-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis\",\"authors\":\"\",\"doi\":\"10.1016/j.nanoms.2023.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With characteristics and advantages of functional composite materials, they are commendably adopted in numerous fields especially in oxygen electrocatalysis, which is due to the significant synergies between various components. Herein, a novel bifunctional oxygen electrocatalyst (Co-CNT@COF-Pyr) has been synthesized through in-situ growth of covalent organic frameworks (COFs) layers on the outer surface of highly conductive carbon nanotubes (CNTs) followed by coordination with Co(Ⅱ). For electrocatalytic OER, Co-CNT@COF-Pyr reveals a low overpotential (438 mV) in alkaline electrolyte (1.0 M aqueous solution of KOH) with a current density of 10 mA cm<sup>−2</sup>, which is comparable to most discovered COF-based catalysts. For electrocatalytic ORR, Co-CNT@COF-Pyr exhibits a low H<sub>2</sub>O<sub>2</sub> yield range (9.0 %–10.1 %) and a reaction pathway close to 4e<sup>−</sup> (n = 3.82–3.80) in alkaline electrolyte (0.1 M aqueous solution of KOH) within the test potential range of 0.1–0.6 V vs. RHE, which is superior to most reported COF-based catalysts. Hence, this research could not only offer an innovative insight into the construction of composites, but also facilitate the practical application of renewable fuel cells, closed water cycle, and rechargeable metal-air batteries.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000636/pdfft?md5=538c5b83327b1bbe3d623a36a5742ca5&pid=1-s2.0-S2589965123000636-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000636\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000636","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
功能复合材料具有功能复合材料的特点和优点,由于其各组分之间具有显著的协同作用,在许多领域得到了广泛的应用,特别是在氧电催化方面。本文通过在高导电性碳纳米管(CNTs)的外表面原位生长共价有机框架(COFs)层,并与Co(Ⅱ)配位,合成了一种新型双功能氧电催化剂(Co-CNT@COF-Pyr)。对于电催化OER, Co-CNT@COF-Pyr显示在碱性电解质(1.0 M KOH水溶液)中电流密度为10 mA cm−2,过电位低(438 mV),与大多数已发现的cof基催化剂相当。对于电催化ORR, Co-CNT@COF-Pyr表现出较低的H2O2产率范围(9.0% ~ 10.1%),在碱性电解质(0.1 M KOH水溶液)中,在0.1 ~ 0.6 V的测试电位范围内,反应路径接近4e−(n = 3.82 ~ 3.80),优于大多数报道的cof基催化剂。因此,这项研究不仅可以为复合材料的结构提供创新的见解,而且可以促进可再生燃料电池,闭式水循环和可充电金属-空气电池的实际应用。
Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis
With characteristics and advantages of functional composite materials, they are commendably adopted in numerous fields especially in oxygen electrocatalysis, which is due to the significant synergies between various components. Herein, a novel bifunctional oxygen electrocatalyst (Co-CNT@COF-Pyr) has been synthesized through in-situ growth of covalent organic frameworks (COFs) layers on the outer surface of highly conductive carbon nanotubes (CNTs) followed by coordination with Co(Ⅱ). For electrocatalytic OER, Co-CNT@COF-Pyr reveals a low overpotential (438 mV) in alkaline electrolyte (1.0 M aqueous solution of KOH) with a current density of 10 mA cm−2, which is comparable to most discovered COF-based catalysts. For electrocatalytic ORR, Co-CNT@COF-Pyr exhibits a low H2O2 yield range (9.0 %–10.1 %) and a reaction pathway close to 4e− (n = 3.82–3.80) in alkaline electrolyte (0.1 M aqueous solution of KOH) within the test potential range of 0.1–0.6 V vs. RHE, which is superior to most reported COF-based catalysts. Hence, this research could not only offer an innovative insight into the construction of composites, but also facilitate the practical application of renewable fuel cells, closed water cycle, and rechargeable metal-air batteries.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.