扑翼飞行器柔性多体动力学仿真

IF 1.5 4区 工程技术 Q2 ENGINEERING, AEROSPACE International Journal of Micro Air Vehicles Pub Date : 2021-10-20 DOI:10.1177/17568293211043305
JaeWon Choi, DuHyun Gong, Junhee Lee, Chongam Kim, SangJoon Shin
{"title":"扑翼飞行器柔性多体动力学仿真","authors":"JaeWon Choi, DuHyun Gong, Junhee Lee, Chongam Kim, SangJoon Shin","doi":"10.1177/17568293211043305","DOIUrl":null,"url":null,"abstract":"<p>An insect-type flapping wing micro aerial vehicle offers high aerodynamic efficiency and maneuverability in confined spaces. The complicated aerodynamic/structural behavior of flapping wing micro aerial vehicle, however, causes difficulties regarding the dynamic control and parametric design. This paper develops a moderately accurate numerical framework taking into account the passive motion of the main wings. Finite-element-based multibody dynamics and two-dimensional unsteady aerodynamics are combined to simulate the hover of a flapping wing micro aerial vehicle. In addition, flexible and rigid wings are compared through numerical simulation considering the flexibility. In terms of the average thrust, numerical simulation by fluid–structure interaction shows good agreements against the experimental results within 5% discrepancy.</p>","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":"60 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of the flapping wing aerial vehicle using flexible multibody dynamics\",\"authors\":\"JaeWon Choi, DuHyun Gong, Junhee Lee, Chongam Kim, SangJoon Shin\",\"doi\":\"10.1177/17568293211043305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An insect-type flapping wing micro aerial vehicle offers high aerodynamic efficiency and maneuverability in confined spaces. The complicated aerodynamic/structural behavior of flapping wing micro aerial vehicle, however, causes difficulties regarding the dynamic control and parametric design. This paper develops a moderately accurate numerical framework taking into account the passive motion of the main wings. Finite-element-based multibody dynamics and two-dimensional unsteady aerodynamics are combined to simulate the hover of a flapping wing micro aerial vehicle. In addition, flexible and rigid wings are compared through numerical simulation considering the flexibility. In terms of the average thrust, numerical simulation by fluid–structure interaction shows good agreements against the experimental results within 5% discrepancy.</p>\",\"PeriodicalId\":49053,\"journal\":{\"name\":\"International Journal of Micro Air Vehicles\",\"volume\":\"60 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Micro Air Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568293211043305\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568293211043305","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

昆虫型扑翼微型飞行器具有很高的气动效率和在密闭空间内的机动性。扑翼微型飞行器复杂的气动结构特性给其动力学控制和参数化设计带来了困难。本文建立了一个考虑主翼被动运动的中等精度的数值框架。将基于有限元的多体动力学和二维非定常空气动力学相结合,对扑翼微型飞行器的悬停进行了仿真。此外,通过数值模拟对考虑柔性的柔性翼和刚性翼进行了比较。在平均推力方面,流固耦合的数值模拟结果与实验结果吻合较好,误差在5%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of the flapping wing aerial vehicle using flexible multibody dynamics

An insect-type flapping wing micro aerial vehicle offers high aerodynamic efficiency and maneuverability in confined spaces. The complicated aerodynamic/structural behavior of flapping wing micro aerial vehicle, however, causes difficulties regarding the dynamic control and parametric design. This paper develops a moderately accurate numerical framework taking into account the passive motion of the main wings. Finite-element-based multibody dynamics and two-dimensional unsteady aerodynamics are combined to simulate the hover of a flapping wing micro aerial vehicle. In addition, flexible and rigid wings are compared through numerical simulation considering the flexibility. In terms of the average thrust, numerical simulation by fluid–structure interaction shows good agreements against the experimental results within 5% discrepancy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
7.10%
发文量
13
审稿时长
>12 weeks
期刊介绍: The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.
期刊最新文献
Corrigendum to “Exploring tandem wing UAS designs for operation in turbulent urban environments” Incremental coverage path planning method for UAV ground mapping in unknown area Development of a tube-launched tail-sitter unmanned aerial vehicle Parameter effect on the novel swashplateless rotor control Co-TS: Design and Implementation of a 2-UAV Cooperative Transportation System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1