{"title":"四值动态逻辑及其证明理论","authors":"Diana Costa","doi":"10.1093/logcom/exad044","DOIUrl":null,"url":null,"abstract":"Transition systems are often used to describe the behaviour of software systems. If viewed as a graph then, at their most basic level, vertices correspond to the states of a program and each edge represents a transition between states via the (atomic) action labelled. In this setting, systems are thought to be consistent and at each state formulas are evaluated as either true or false. On the other hand, when a structure of this sort—e.g. a map where states represent locations, some local properties are known and labelled transitions represent information available about different routes—is built resorting to multiple sources of information, it is common to find inconsistent or incomplete information regarding what holds at each state, both at the level of propositional variables and transitions. This paper aims at bringing together Belnap’s four values, Dynamic Logic and hybrid machinery such as nominals and the satisfaction operator, so that reasoning is still possible in face of contradicting evidence. Proof-theory for this new logic is explored by means of a terminating, sound and complete tableau system.","PeriodicalId":50162,"journal":{"name":"Journal of Logic and Computation","volume":"1978 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4DL: a four-valued dynamic logic and its proof theory\",\"authors\":\"Diana Costa\",\"doi\":\"10.1093/logcom/exad044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transition systems are often used to describe the behaviour of software systems. If viewed as a graph then, at their most basic level, vertices correspond to the states of a program and each edge represents a transition between states via the (atomic) action labelled. In this setting, systems are thought to be consistent and at each state formulas are evaluated as either true or false. On the other hand, when a structure of this sort—e.g. a map where states represent locations, some local properties are known and labelled transitions represent information available about different routes—is built resorting to multiple sources of information, it is common to find inconsistent or incomplete information regarding what holds at each state, both at the level of propositional variables and transitions. This paper aims at bringing together Belnap’s four values, Dynamic Logic and hybrid machinery such as nominals and the satisfaction operator, so that reasoning is still possible in face of contradicting evidence. Proof-theory for this new logic is explored by means of a terminating, sound and complete tableau system.\",\"PeriodicalId\":50162,\"journal\":{\"name\":\"Journal of Logic and Computation\",\"volume\":\"1978 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logic and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1093/logcom/exad044\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logic and Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1093/logcom/exad044","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
4DL: a four-valued dynamic logic and its proof theory
Transition systems are often used to describe the behaviour of software systems. If viewed as a graph then, at their most basic level, vertices correspond to the states of a program and each edge represents a transition between states via the (atomic) action labelled. In this setting, systems are thought to be consistent and at each state formulas are evaluated as either true or false. On the other hand, when a structure of this sort—e.g. a map where states represent locations, some local properties are known and labelled transitions represent information available about different routes—is built resorting to multiple sources of information, it is common to find inconsistent or incomplete information regarding what holds at each state, both at the level of propositional variables and transitions. This paper aims at bringing together Belnap’s four values, Dynamic Logic and hybrid machinery such as nominals and the satisfaction operator, so that reasoning is still possible in face of contradicting evidence. Proof-theory for this new logic is explored by means of a terminating, sound and complete tableau system.
期刊介绍:
Logic has found application in virtually all aspects of Information Technology, from software engineering and hardware to programming and artificial intelligence. Indeed, logic, artificial intelligence and theoretical computing are influencing each other to the extent that a new interdisciplinary area of Logic and Computation is emerging.
The Journal of Logic and Computation aims to promote the growth of logic and computing, including, among others, the following areas of interest: Logical Systems, such as classical and non-classical logic, constructive logic, categorical logic, modal logic, type theory, feasible maths.... Logical issues in logic programming, knowledge-based systems and automated reasoning; logical issues in knowledge representation, such as non-monotonic reasoning and systems of knowledge and belief; logics and semantics of programming; specification and verification of programs and systems; applications of logic in hardware and VLSI, natural language, concurrent computation, planning, and databases. The bulk of the content is technical scientific papers, although letters, reviews, and discussions, as well as relevant conference reviews, are included.