基于影响矩阵的飞机功能模块两级迭代节点重要性评估

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2023-11-22 DOI:10.1155/2023/2316511
Chang Liu, Jinyan Wang, Kangxing Wang
{"title":"基于影响矩阵的飞机功能模块两级迭代节点重要性评估","authors":"Chang Liu, Jinyan Wang, Kangxing Wang","doi":"10.1155/2023/2316511","DOIUrl":null,"url":null,"abstract":"Accurate evaluation of the critical nodes in the system is essential work for a multiplatform avionics system (MPAS) for resource allocation and other works. However, current evaluation methods are either limited to the aircraft level or the function module level. There is a lack of research on the evaluation using the information of these two levels. In view of this situation, this paper researches the two-level iterative method of evaluating the importance of aircraft function modules. The influence matrix was constructed by using the node access probability calculated by the PageRank algorithm and the function module weight calculated based on centrality. In addition, the importance of aircraft nodes was used to carry out two-level iteration, and finally, the importance of aircraft function modules was obtained. The experimental results show that this method can comprehensively utilize the information on aircraft cooperative network and function module cooperative network, solve the key problems of two-level iterative evaluation, and meet the requirement of evaluating critical nodes in a system.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Two-Level Iterative Node Importance Evaluation of Aircraft Function Modules Based on Influence Matrix\",\"authors\":\"Chang Liu, Jinyan Wang, Kangxing Wang\",\"doi\":\"10.1155/2023/2316511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate evaluation of the critical nodes in the system is essential work for a multiplatform avionics system (MPAS) for resource allocation and other works. However, current evaluation methods are either limited to the aircraft level or the function module level. There is a lack of research on the evaluation using the information of these two levels. In view of this situation, this paper researches the two-level iterative method of evaluating the importance of aircraft function modules. The influence matrix was constructed by using the node access probability calculated by the PageRank algorithm and the function module weight calculated based on centrality. In addition, the importance of aircraft nodes was used to carry out two-level iteration, and finally, the importance of aircraft function modules was obtained. The experimental results show that this method can comprehensively utilize the information on aircraft cooperative network and function module cooperative network, solve the key problems of two-level iterative evaluation, and meet the requirement of evaluating critical nodes in a system.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2316511\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/2316511","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

系统关键节点的准确评估是多平台航电系统(MPAS)资源分配和其他工作的基础工作。然而,目前的评估方法要么局限于飞机层面,要么局限于功能模块层面。利用这两个层次的信息进行评价的研究还比较缺乏。针对这种情况,本文研究了飞机功能模块重要性评估的两级迭代方法。利用PageRank算法计算的节点访问概率和基于中心性计算的功能模块权重构建影响矩阵。此外,利用飞机节点的重要度进行两级迭代,最终得到飞机功能模块的重要度。实验结果表明,该方法能够综合利用飞机协同网络和功能模块协同网络的信息,解决两级迭代评估的关键问题,满足对系统关键节点的评估需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Two-Level Iterative Node Importance Evaluation of Aircraft Function Modules Based on Influence Matrix
Accurate evaluation of the critical nodes in the system is essential work for a multiplatform avionics system (MPAS) for resource allocation and other works. However, current evaluation methods are either limited to the aircraft level or the function module level. There is a lack of research on the evaluation using the information of these two levels. In view of this situation, this paper researches the two-level iterative method of evaluating the importance of aircraft function modules. The influence matrix was constructed by using the node access probability calculated by the PageRank algorithm and the function module weight calculated based on centrality. In addition, the importance of aircraft nodes was used to carry out two-level iteration, and finally, the importance of aircraft function modules was obtained. The experimental results show that this method can comprehensively utilize the information on aircraft cooperative network and function module cooperative network, solve the key problems of two-level iterative evaluation, and meet the requirement of evaluating critical nodes in a system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Novel Strategy for Hypersonic Vehicle With Complex Distributed No-Fly Zone Constraints Development of Anisogrid Lattice Composite Structures for Fighter Wing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1