石油污染对黄土丘陵区土壤微生物多样性的影响

IF 3 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Annals of Microbiology Pub Date : 2022-07-14 DOI:10.1186/s13213-022-01683-7
Shi, Lei, Liu, Zhongzheng, Yang, Liangyan, Fan, Wangtao
{"title":"石油污染对黄土丘陵区土壤微生物多样性的影响","authors":"Shi, Lei, Liu, Zhongzheng, Yang, Liangyan, Fan, Wangtao","doi":"10.1186/s13213-022-01683-7","DOIUrl":null,"url":null,"abstract":"Data support and theoretical basis for bioremediation and treatment of petroleum-contaminated soils in the Loess hills of Yan’an, northern Shaanxi. The evolutionary characteristics of soil microbial diversity and community structure under different levels of oil pollution were studied by field sampling, indoor simulation experiments, and analyzed through assays, using the mine soils from Yan’an, Shaanxi Province, as the research object. Compared with clean soil, the microbial species in contaminated soil were significantly reduced, the dominant flora changed, and the flora capable of degrading petroleum pollutants increased significantly. The soil microbial diversity and community structure differed, although not significantly, between different pollution levels, but significantly from clean soil. In the uncontaminated soil (CK), the dominant soil microbial genera were mainly Pantoea, Sphingomonas, Thiothrix, and Nocardioides. The abundance of Pseudomonas, Pedobacter, Massilia, Nocardioides, and Acinetobacter in the soil increased after oil contamination, while Thiothrix, Sphingomonas, and Gemmatimonas decreased significantly. After the soil was contaminated with petroleum, the microbial species in the soil decreased significantly, the dominant genera in the soil changed, and the relative abundance of bacteria groups capable of degrading petroleum pollutants increased. The genera that can degrade petroleum pollutants in the petroleum-contaminated soil in the study area mainly include Pseudomonas, Acinetobacter, Pedobacter, Acinetobacter, and Nocardioides, which provide a scientific basis for exploring It provides a scientific basis for exploring remediation methods suitable for petroleum-contaminated soil in this region.","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":"73 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Effects of oil pollution on soil microbial diversity in the Loess hilly areas, China\",\"authors\":\"Shi, Lei, Liu, Zhongzheng, Yang, Liangyan, Fan, Wangtao\",\"doi\":\"10.1186/s13213-022-01683-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data support and theoretical basis for bioremediation and treatment of petroleum-contaminated soils in the Loess hills of Yan’an, northern Shaanxi. The evolutionary characteristics of soil microbial diversity and community structure under different levels of oil pollution were studied by field sampling, indoor simulation experiments, and analyzed through assays, using the mine soils from Yan’an, Shaanxi Province, as the research object. Compared with clean soil, the microbial species in contaminated soil were significantly reduced, the dominant flora changed, and the flora capable of degrading petroleum pollutants increased significantly. The soil microbial diversity and community structure differed, although not significantly, between different pollution levels, but significantly from clean soil. In the uncontaminated soil (CK), the dominant soil microbial genera were mainly Pantoea, Sphingomonas, Thiothrix, and Nocardioides. The abundance of Pseudomonas, Pedobacter, Massilia, Nocardioides, and Acinetobacter in the soil increased after oil contamination, while Thiothrix, Sphingomonas, and Gemmatimonas decreased significantly. After the soil was contaminated with petroleum, the microbial species in the soil decreased significantly, the dominant genera in the soil changed, and the relative abundance of bacteria groups capable of degrading petroleum pollutants increased. The genera that can degrade petroleum pollutants in the petroleum-contaminated soil in the study area mainly include Pseudomonas, Acinetobacter, Pedobacter, Acinetobacter, and Nocardioides, which provide a scientific basis for exploring It provides a scientific basis for exploring remediation methods suitable for petroleum-contaminated soil in this region.\",\"PeriodicalId\":8069,\"journal\":{\"name\":\"Annals of Microbiology\",\"volume\":\"73 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13213-022-01683-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13213-022-01683-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

陕北延安黄土丘陵区石油污染土壤生物修复与治理的数据支持与理论基础以陕西延安矿区土壤为研究对象,通过现场采样、室内模拟实验和分析分析,研究了不同程度石油污染下土壤微生物多样性和群落结构的演化特征。与清洁土壤相比,污染土壤中微生物种类明显减少,优势菌群发生变化,能够降解石油污染物的菌群显著增加。土壤微生物多样性和群落结构在不同污染水平之间差异不显著,但在清洁土壤中差异显著。在未污染土壤(CK)中,优势微生物属主要为泛菌属、鞘单胞菌属、硫垂菌属和Nocardioides。油污染后土壤中假单胞菌、土杆菌、Massilia、Nocardioides和Acinetobacter的丰度增加,而硫垂菌、鞘单胞菌和双胞菌的丰度显著降低。土壤被石油污染后,土壤微生物种类明显减少,土壤优势属发生变化,能够降解石油污染物的细菌类群相对丰度增加。研究区石油污染土壤中可降解石油污染物的属主要有Pseudomonas、Acinetobacter、Pedobacter、Acinetobacter、Nocardioides等,为探索提供了科学依据,为探索适合本地区石油污染土壤的修复方法提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of oil pollution on soil microbial diversity in the Loess hilly areas, China
Data support and theoretical basis for bioremediation and treatment of petroleum-contaminated soils in the Loess hills of Yan’an, northern Shaanxi. The evolutionary characteristics of soil microbial diversity and community structure under different levels of oil pollution were studied by field sampling, indoor simulation experiments, and analyzed through assays, using the mine soils from Yan’an, Shaanxi Province, as the research object. Compared with clean soil, the microbial species in contaminated soil were significantly reduced, the dominant flora changed, and the flora capable of degrading petroleum pollutants increased significantly. The soil microbial diversity and community structure differed, although not significantly, between different pollution levels, but significantly from clean soil. In the uncontaminated soil (CK), the dominant soil microbial genera were mainly Pantoea, Sphingomonas, Thiothrix, and Nocardioides. The abundance of Pseudomonas, Pedobacter, Massilia, Nocardioides, and Acinetobacter in the soil increased after oil contamination, while Thiothrix, Sphingomonas, and Gemmatimonas decreased significantly. After the soil was contaminated with petroleum, the microbial species in the soil decreased significantly, the dominant genera in the soil changed, and the relative abundance of bacteria groups capable of degrading petroleum pollutants increased. The genera that can degrade petroleum pollutants in the petroleum-contaminated soil in the study area mainly include Pseudomonas, Acinetobacter, Pedobacter, Acinetobacter, and Nocardioides, which provide a scientific basis for exploring It provides a scientific basis for exploring remediation methods suitable for petroleum-contaminated soil in this region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Microbiology
Annals of Microbiology 生物-生物工程与应用微生物
CiteScore
6.40
自引率
0.00%
发文量
41
审稿时长
3.2 months
期刊介绍: Annals of Microbiology covers these fields of fundamental and applied microbiology: general, environmental, food, agricultural, industrial, ecology, soil, water, air and biodeterioration. The journal’s scope does not include medical microbiology or phytopathological microbiology. Papers reporting work on bacteria, fungi, microalgae, and bacteriophages are welcome. Annals of Microbiology publishes Review Articles, Original Articles, Short Communications, and Editorials. Originally founded as Annali Di Microbiologia Ed Enzimologia in 1940, Annals of Microbiology is an official journal of the University of Milan.
期刊最新文献
Review on effect of fermentation on physicochemical properties, anti-nutritional factors and sensory properties of cereal-based fermented foods and beverages Antimicrobial metabolites from Probiotics, Pleurotus ostreatus and their co-cultures against foodborne pathogens isolated from ready-to-eat foods Eco-friendly biotransformation of penicillin G by free and immobilized marine halophilic Bacillus pseudomycoides AH1 Characterization of nuvita biosearch center (NBC) isolated lactic acid bacteria strains from human origin and determination of growth kinetic profiles of selected cultures under bioreactor Probiotic potential of lactic acid bacteria isolated from Ethiopian traditional fermented Cheka beverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1