在母羊乳中添加螺旋藻或鱼油制备益生菌酸奶

IF 3 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Annals of Microbiology Pub Date : 2022-08-04 DOI:10.1186/s13213-022-01686-4
Shazly, Ahmed B., Khattab, Mostafa S. A., Fouad, Mohamed T., Abd El Tawab, Ahmed M., Saudi, Eltaher M., El-Aziz, Mahmoud Abd
{"title":"在母羊乳中添加螺旋藻或鱼油制备益生菌酸奶","authors":"Shazly, Ahmed B., Khattab, Mostafa S. A., Fouad, Mohamed T., Abd El Tawab, Ahmed M., Saudi, Eltaher M., El-Aziz, Mahmoud Abd","doi":"10.1186/s13213-022-01686-4","DOIUrl":null,"url":null,"abstract":"Yoghurt is a widely consumed dairy product around the world. It has healing properties and characteristics that are important for human health. Our goal was to see how using ewes' milk fed Spirulina platensis (SP) or fish oil (FO)-supplemented diets affected the chemical, physical, and nutritional properties of yoghurt, as well as the activity and survival of starter and probiotic bacteria during storage. The collected milk from each ewe group was preheated to 65 °C and homogenized in a laboratory homogenizer, then heated to 90 °C for 5 min, cooled to 42 °C, and divided into two equal portions. The first portion was inoculated with 2.0% mixed starter culture (Lactobacillus bulgaricus and Streptococcus thermophilus, 1:1), whereas the second was inoculated with 2% mixed starter culture and 1% Bifidobacterium longum as a probiotic bacteria. SP yoghurt had the highest levels of short chain-FA, medium chain-FA, mostly C10:0, and long chain-FA, namely C16:0, C18:2 and the lowest levels of C18:0 and C18:1, followed by FO yoghurt. The addition of SP or FO to ewes' diets resulted in yoghurt with higher viable counts of L. bulgaricus and S. thermophilus, which were still >107 cfu/g at the end of storage, as well as a higher level of acetaldehyde content (P<0.05) as a flavor compound, than the control (C) yoghurt. The viscosity of SP yoghurt was higher than that of FO and C yoghurt; the difference was not significant. The addition of B. longum, a probiotic bacteria, to all yoghurt samples, improved antioxidant activities, particularly against ABTS• radicals, but reduced SP yoghurt viscosity. When B. longum was added, acetaldehyde content increased from 39.91, 90.47, and 129.31 μmol/100g in C, FA, and SP yoghurts to 46.67, 135.55, and 144.1 μmol/100g in probiotic C, FA, and SP yoghurts, respectively. There was no significant difference in sensory qualities among all the yoghurt samples during all storage periods. Supplementing the ewes' diets with Spirulina platensis or fish oil can change the fatty acid composition of the resulting yoghurt. The starter culture's activity, flavor compounds, and some chemical, physical, and antioxidant properties of milk produced from these diets can all be improved, particularly in yoghurt treated with probiotic bacteria (B. longum).","PeriodicalId":8069,"journal":{"name":"Annals of Microbiology","volume":"72 6","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Probiotic Yoghurt Made from Milk of Ewes Fed a Diet Supplemented with Spirulina platensis or Fish Oil\",\"authors\":\"Shazly, Ahmed B., Khattab, Mostafa S. A., Fouad, Mohamed T., Abd El Tawab, Ahmed M., Saudi, Eltaher M., El-Aziz, Mahmoud Abd\",\"doi\":\"10.1186/s13213-022-01686-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yoghurt is a widely consumed dairy product around the world. It has healing properties and characteristics that are important for human health. Our goal was to see how using ewes' milk fed Spirulina platensis (SP) or fish oil (FO)-supplemented diets affected the chemical, physical, and nutritional properties of yoghurt, as well as the activity and survival of starter and probiotic bacteria during storage. The collected milk from each ewe group was preheated to 65 °C and homogenized in a laboratory homogenizer, then heated to 90 °C for 5 min, cooled to 42 °C, and divided into two equal portions. The first portion was inoculated with 2.0% mixed starter culture (Lactobacillus bulgaricus and Streptococcus thermophilus, 1:1), whereas the second was inoculated with 2% mixed starter culture and 1% Bifidobacterium longum as a probiotic bacteria. SP yoghurt had the highest levels of short chain-FA, medium chain-FA, mostly C10:0, and long chain-FA, namely C16:0, C18:2 and the lowest levels of C18:0 and C18:1, followed by FO yoghurt. The addition of SP or FO to ewes' diets resulted in yoghurt with higher viable counts of L. bulgaricus and S. thermophilus, which were still >107 cfu/g at the end of storage, as well as a higher level of acetaldehyde content (P<0.05) as a flavor compound, than the control (C) yoghurt. The viscosity of SP yoghurt was higher than that of FO and C yoghurt; the difference was not significant. The addition of B. longum, a probiotic bacteria, to all yoghurt samples, improved antioxidant activities, particularly against ABTS• radicals, but reduced SP yoghurt viscosity. When B. longum was added, acetaldehyde content increased from 39.91, 90.47, and 129.31 μmol/100g in C, FA, and SP yoghurts to 46.67, 135.55, and 144.1 μmol/100g in probiotic C, FA, and SP yoghurts, respectively. There was no significant difference in sensory qualities among all the yoghurt samples during all storage periods. Supplementing the ewes' diets with Spirulina platensis or fish oil can change the fatty acid composition of the resulting yoghurt. The starter culture's activity, flavor compounds, and some chemical, physical, and antioxidant properties of milk produced from these diets can all be improved, particularly in yoghurt treated with probiotic bacteria (B. longum).\",\"PeriodicalId\":8069,\"journal\":{\"name\":\"Annals of Microbiology\",\"volume\":\"72 6\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13213-022-01686-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13213-022-01686-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

酸奶是世界上广泛消费的乳制品。它具有对人体健康很重要的治疗特性和特性。我们的目的是观察用母奶饲喂螺旋藻(SP)或添加鱼油(FO)的饲料对酸奶的化学、物理和营养特性的影响,以及在储存过程中发酵剂和益生菌的活性和存活率的影响。将各组母羊采集的奶预热至65℃,在实验室均质机中均质,然后加热至90℃5 min,冷却至42℃,分成两等份。第一部分接种2.0%混合发酵剂(保加利亚乳杆菌与嗜热链球菌比例为1:1),第二部分接种2%混合发酵剂和1%长双歧杆菌作为益生菌。SP型酸奶的短链fa含量最高,中链fa含量以c10∶0居多,长链fa含量以c16∶0、c18∶2居多,c18∶0、c18∶1含量最低,FO型酸奶次之。在母羊日粮中添加SP或FO后,发酵乳中保加利亚乳杆菌和嗜热链球菌的活菌数均高于对照(C),贮藏末期仍>107 cfu/g,风味化合物乙醛含量也高于对照(C) (P<0.05)。SP酸奶的粘度高于FO和C酸奶;差异不显著。在所有酸奶样品中添加长芽胞杆菌(一种益生菌),提高了抗氧化活性,特别是抗ABTS•自由基,但降低了SP酸奶的粘度。添加长芽甘蓝后,C、FA和SP酸奶的乙醛含量分别从39.91、90.47和129.31 μmol/100g增加到46.67、135.55和144.1 μmol/100g。不同贮藏期酸奶的感官品质无显著差异。在母羊日粮中添加螺旋藻或鱼油可以改变所得酸奶的脂肪酸组成。发酵剂的活性、风味化合物以及由这些日粮生产的牛奶的一些化学、物理和抗氧化特性都可以得到改善,特别是在用益生菌(长芽孢杆菌)处理的酸奶中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probiotic Yoghurt Made from Milk of Ewes Fed a Diet Supplemented with Spirulina platensis or Fish Oil
Yoghurt is a widely consumed dairy product around the world. It has healing properties and characteristics that are important for human health. Our goal was to see how using ewes' milk fed Spirulina platensis (SP) or fish oil (FO)-supplemented diets affected the chemical, physical, and nutritional properties of yoghurt, as well as the activity and survival of starter and probiotic bacteria during storage. The collected milk from each ewe group was preheated to 65 °C and homogenized in a laboratory homogenizer, then heated to 90 °C for 5 min, cooled to 42 °C, and divided into two equal portions. The first portion was inoculated with 2.0% mixed starter culture (Lactobacillus bulgaricus and Streptococcus thermophilus, 1:1), whereas the second was inoculated with 2% mixed starter culture and 1% Bifidobacterium longum as a probiotic bacteria. SP yoghurt had the highest levels of short chain-FA, medium chain-FA, mostly C10:0, and long chain-FA, namely C16:0, C18:2 and the lowest levels of C18:0 and C18:1, followed by FO yoghurt. The addition of SP or FO to ewes' diets resulted in yoghurt with higher viable counts of L. bulgaricus and S. thermophilus, which were still >107 cfu/g at the end of storage, as well as a higher level of acetaldehyde content (P<0.05) as a flavor compound, than the control (C) yoghurt. The viscosity of SP yoghurt was higher than that of FO and C yoghurt; the difference was not significant. The addition of B. longum, a probiotic bacteria, to all yoghurt samples, improved antioxidant activities, particularly against ABTS• radicals, but reduced SP yoghurt viscosity. When B. longum was added, acetaldehyde content increased from 39.91, 90.47, and 129.31 μmol/100g in C, FA, and SP yoghurts to 46.67, 135.55, and 144.1 μmol/100g in probiotic C, FA, and SP yoghurts, respectively. There was no significant difference in sensory qualities among all the yoghurt samples during all storage periods. Supplementing the ewes' diets with Spirulina platensis or fish oil can change the fatty acid composition of the resulting yoghurt. The starter culture's activity, flavor compounds, and some chemical, physical, and antioxidant properties of milk produced from these diets can all be improved, particularly in yoghurt treated with probiotic bacteria (B. longum).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Microbiology
Annals of Microbiology 生物-生物工程与应用微生物
CiteScore
6.40
自引率
0.00%
发文量
41
审稿时长
3.2 months
期刊介绍: Annals of Microbiology covers these fields of fundamental and applied microbiology: general, environmental, food, agricultural, industrial, ecology, soil, water, air and biodeterioration. The journal’s scope does not include medical microbiology or phytopathological microbiology. Papers reporting work on bacteria, fungi, microalgae, and bacteriophages are welcome. Annals of Microbiology publishes Review Articles, Original Articles, Short Communications, and Editorials. Originally founded as Annali Di Microbiologia Ed Enzimologia in 1940, Annals of Microbiology is an official journal of the University of Milan.
期刊最新文献
Review on effect of fermentation on physicochemical properties, anti-nutritional factors and sensory properties of cereal-based fermented foods and beverages Antimicrobial metabolites from Probiotics, Pleurotus ostreatus and their co-cultures against foodborne pathogens isolated from ready-to-eat foods Eco-friendly biotransformation of penicillin G by free and immobilized marine halophilic Bacillus pseudomycoides AH1 Characterization of nuvita biosearch center (NBC) isolated lactic acid bacteria strains from human origin and determination of growth kinetic profiles of selected cultures under bioreactor Probiotic potential of lactic acid bacteria isolated from Ethiopian traditional fermented Cheka beverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1