无氧腹内侧核PACAP神经元对弓形原皮质素和神经肽Y/Agouti相关肽神经元兴奋性的动态、性别和饮食特异性多效性调节

IF 3.3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Neuroendocrinology Pub Date : 2023-12-06 DOI:10.1111/jne.13357
Veronica Mata-Pacheco, Jennifer Hernandez, Nandini Varma, Jenny Xu, Sarah Sayers, Nikki Le, Edward J. Wagner
{"title":"无氧腹内侧核PACAP神经元对弓形原皮质素和神经肽Y/Agouti相关肽神经元兴奋性的动态、性别和饮食特异性多效性调节","authors":"Veronica Mata-Pacheco,&nbsp;Jennifer Hernandez,&nbsp;Nandini Varma,&nbsp;Jenny Xu,&nbsp;Sarah Sayers,&nbsp;Nikki Le,&nbsp;Edward J. Wagner","doi":"10.1111/jne.13357","DOIUrl":null,"url":null,"abstract":"<p>This study furthers the investigation of how pituitary adenylate cyclase activating polypeptide (PACAP) and the PAC1 receptor (PAC1R) regulate the homeostatic energy balance circuitry. We hypothesized that apoptotic ablation of PACAP neurones in the hypothalamic ventromedial nucleus (VMN) would affect both energy intake and energy expenditure. We also hypothesized that selective PAC1R knockdown would impair the PACAP-induced excitation in anorexigenic proopiomelanocortin (POMC) neurones and inhibition of orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones in the hypothalamic arcuate nucleus (ARC). The results show CASPASE-3-induced ablation of VMN PACAP neurones leads to increased energy intake and meal frequency as well as decreased energy expenditure in lean animals. The effects were more robust in obese males, whereas we saw the opposite effects in obese females. We then utilized visualized whole-cell patch clamp recordings in hypothalamic slices. PAC1R knockdown in POMC neurones diminishes the PACAP-induced depolarization, increase in firing, decreases in energy intake and meal size, as well as increases in CO<sub>2</sub> production and O<sub>2</sub> consumption. Similarly, the lack of expression of the PAC1R in NPY/AgRP neurones greatly attenuates the PACAP-induced hyperpolarization, suppression of firing, decreases in energy intake and meal frequency, as well as increases in energy expenditure. The PACAP response in NPY/AgRP neurones switched from predominantly inhibitory to excitatory in fasted animals. Finally, the anorexigenic effect of PACAP was potentiated when oestradiol was injected into the ARC in ovariectomized females. This study demonstrates the critical role of anorexigenic VMN PACAP neurones and the PAC1R in exciting POMC and inhibiting NPY/AgRP neurons to control homeostatic feeding.</p>","PeriodicalId":16535,"journal":{"name":"Journal of Neuroendocrinology","volume":"36 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13357","citationCount":"0","resultStr":"{\"title\":\"Dynamic, sex- and diet-specific pleiotropism in the PAC1 receptor-mediated regulation of arcuate proopiomelanocortin and Neuropeptide Y/Agouti related peptide neuronal excitability by anorexigenic ventromedial nucleus PACAP neurons\",\"authors\":\"Veronica Mata-Pacheco,&nbsp;Jennifer Hernandez,&nbsp;Nandini Varma,&nbsp;Jenny Xu,&nbsp;Sarah Sayers,&nbsp;Nikki Le,&nbsp;Edward J. Wagner\",\"doi\":\"10.1111/jne.13357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study furthers the investigation of how pituitary adenylate cyclase activating polypeptide (PACAP) and the PAC1 receptor (PAC1R) regulate the homeostatic energy balance circuitry. We hypothesized that apoptotic ablation of PACAP neurones in the hypothalamic ventromedial nucleus (VMN) would affect both energy intake and energy expenditure. We also hypothesized that selective PAC1R knockdown would impair the PACAP-induced excitation in anorexigenic proopiomelanocortin (POMC) neurones and inhibition of orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones in the hypothalamic arcuate nucleus (ARC). The results show CASPASE-3-induced ablation of VMN PACAP neurones leads to increased energy intake and meal frequency as well as decreased energy expenditure in lean animals. The effects were more robust in obese males, whereas we saw the opposite effects in obese females. We then utilized visualized whole-cell patch clamp recordings in hypothalamic slices. PAC1R knockdown in POMC neurones diminishes the PACAP-induced depolarization, increase in firing, decreases in energy intake and meal size, as well as increases in CO<sub>2</sub> production and O<sub>2</sub> consumption. Similarly, the lack of expression of the PAC1R in NPY/AgRP neurones greatly attenuates the PACAP-induced hyperpolarization, suppression of firing, decreases in energy intake and meal frequency, as well as increases in energy expenditure. The PACAP response in NPY/AgRP neurones switched from predominantly inhibitory to excitatory in fasted animals. Finally, the anorexigenic effect of PACAP was potentiated when oestradiol was injected into the ARC in ovariectomized females. This study demonstrates the critical role of anorexigenic VMN PACAP neurones and the PAC1R in exciting POMC and inhibiting NPY/AgRP neurons to control homeostatic feeding.</p>\",\"PeriodicalId\":16535,\"journal\":{\"name\":\"Journal of Neuroendocrinology\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jne.13357\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroendocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jne.13357\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jne.13357","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

本研究进一步探讨垂体腺苷酸环化酶激活多肽(PACAP)和PAC1受体(PAC1R)如何调节稳态能量平衡回路。我们假设下丘脑腹内侧核(VMN) PACAP神经元的凋亡消融会影响能量摄入和能量消耗。我们还假设,选择性地敲低PAC1R会损害pacap诱导的厌氧原黑素皮质素(POMC)神经元的兴奋和下丘脑弓状核(ARC)中厌氧神经肽Y (NPY)/刺痛肽相关肽(AgRP)神经元的抑制。结果表明,caspase -3诱导的VMN PACAP神经元消融导致瘦肉动物能量摄入和进餐频率增加,能量消耗降低。这种效应在肥胖的男性身上更为明显,而在肥胖的女性身上则相反。然后,我们在下丘脑切片中使用可视化的全细胞膜片钳记录。在POMC神经元中,PAC1R的敲除减少了pacap诱导的去极化,增加了放电,减少了能量摄入和膳食大小,增加了二氧化碳产生和氧气消耗。同样,在NPY/AgRP神经元中缺乏PAC1R的表达会大大减弱pacap诱导的超极化,抑制放电,减少能量摄入和进餐频率,增加能量消耗。在禁食动物中,NPY/AgRP神经元的PACAP反应从主要抑制性转变为兴奋性。最后,在去卵巢雌性小鼠的ARC内注射雌二醇可增强PACAP的厌氧性。本研究证明了缺氧VMN的PACAP神经元和PAC1R在刺激POMC和抑制NPY/AgRP神经元控制稳态摄食中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic, sex- and diet-specific pleiotropism in the PAC1 receptor-mediated regulation of arcuate proopiomelanocortin and Neuropeptide Y/Agouti related peptide neuronal excitability by anorexigenic ventromedial nucleus PACAP neurons

This study furthers the investigation of how pituitary adenylate cyclase activating polypeptide (PACAP) and the PAC1 receptor (PAC1R) regulate the homeostatic energy balance circuitry. We hypothesized that apoptotic ablation of PACAP neurones in the hypothalamic ventromedial nucleus (VMN) would affect both energy intake and energy expenditure. We also hypothesized that selective PAC1R knockdown would impair the PACAP-induced excitation in anorexigenic proopiomelanocortin (POMC) neurones and inhibition of orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones in the hypothalamic arcuate nucleus (ARC). The results show CASPASE-3-induced ablation of VMN PACAP neurones leads to increased energy intake and meal frequency as well as decreased energy expenditure in lean animals. The effects were more robust in obese males, whereas we saw the opposite effects in obese females. We then utilized visualized whole-cell patch clamp recordings in hypothalamic slices. PAC1R knockdown in POMC neurones diminishes the PACAP-induced depolarization, increase in firing, decreases in energy intake and meal size, as well as increases in CO2 production and O2 consumption. Similarly, the lack of expression of the PAC1R in NPY/AgRP neurones greatly attenuates the PACAP-induced hyperpolarization, suppression of firing, decreases in energy intake and meal frequency, as well as increases in energy expenditure. The PACAP response in NPY/AgRP neurones switched from predominantly inhibitory to excitatory in fasted animals. Finally, the anorexigenic effect of PACAP was potentiated when oestradiol was injected into the ARC in ovariectomized females. This study demonstrates the critical role of anorexigenic VMN PACAP neurones and the PAC1R in exciting POMC and inhibiting NPY/AgRP neurons to control homeostatic feeding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroendocrinology
Journal of Neuroendocrinology 医学-内分泌学与代谢
CiteScore
6.40
自引率
6.20%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Journal of Neuroendocrinology provides the principal international focus for the newest ideas in classical neuroendocrinology and its expanding interface with the regulation of behavioural, cognitive, developmental, degenerative and metabolic processes. Through the rapid publication of original manuscripts and provocative review articles, it provides essential reading for basic scientists and clinicians researching in this rapidly expanding field. In determining content, the primary considerations are excellence, relevance and novelty. While Journal of Neuroendocrinology reflects the broad scientific and clinical interests of the BSN membership, the editorial team, led by Professor Julian Mercer, ensures that the journal’s ethos, authorship, content and purpose are those expected of a leading international publication.
期刊最新文献
Screening and surveillance practices for Multiple Endocrine Neoplasia type 1-related Neuroendocrine Tumours in European Neuroendocrine Tumor Society Centers of Excellence (ENETS CoE)-An ENETS MEN1 task force questionnaire study. The gut-microbiota-brain axis: Focus on gut steroids. The role of combined FDG and SST PET/CT in neuroendocrine tumors. The International Symposium on Avian Endocrinology, 1977-2024: Past, present and future. Current status of peptide receptor radionuclide therapy in grade 1 and 2 gastroenteropancreatic neuroendocrine tumours.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1