Shengfang Qin, Xueyan Wang, Jin Wang, Na Xi, Mengjia Yan, Yuxia He, Mengling Ye, Zhuo Zhang, Yan Yin
{"title":"4例胎儿马赛克染色体非整倍体和孤本二体的产前诊断及临床预后评价。","authors":"Shengfang Qin, Xueyan Wang, Jin Wang, Na Xi, Mengjia Yan, Yuxia He, Mengling Ye, Zhuo Zhang, Yan Yin","doi":"10.1186/s13039-023-00667-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Few co-occurrence cases of mosaic aneuploidy and uniparental disomy (UPD) chromosomes have been reported in prenatal periods. It is a big challenge for us to predict fetal clinical outcomes with these chromosome abnormalities because of their highly heterogeneous clinical manifestations and limited phenotype attainable by ultrasound.</p><p><strong>Methods: </strong>Amniotic fluid samples were collected from four cases. Karyotype, chromosome microarray analysis, short tandem repeats, and whole exome sequencing were adopted to analyze fetal chromosomal aneuploidy, UPD, and gene variation. Meanwhile, CNVseq analysis proceeded for cultured and uncultured amniocytes in case 2 and case 4 and MS-MLPA for chr11 and chr15 in case 3.</p><p><strong>Results: </strong>All four fetuses showed mosaic chromosomal aneuploidy and UPD simultaneously. The results were: Case 1: T2(7%) and UPD(2)mat(12%). Case 2: T15(60%) and UPD(15)mat(40%). Case 3: 45,X(13%) and genome-wide paternal UPD(20%). Case 4: <10% of T20 and > 90% UPD(20)mat in uncultured amniocyte. By analyzing their formation mechanism of mosaic chromosomal aneuploidy and UPD, at least two adverse genetic events happened during their meiosis and mitosis. The fetus of case 1 presented a benign with a normal intrauterine phenotype, consistent with a low proportion of trisomy cells. However, the other three fetuses had adverse pregnancy outcomes, resulting from the UPD chromosomes with imprinted regions involved or a higher level of mosaic aneuploidy.</p><p><strong>Conclusion: </strong>UPD is often present with mosaic aneuploidy. It is necessary to analyze them simultaneously using a whole battery of analyses for these cases when their chromosomes with imprinted regions are involved or known carriers of a recessive allele. Fetal clinical outcomes were related to the affected chromosomes aneuploidy and UPD, mosaic levels and tissues, methylation status, and homozygous variation of recessive genes on the UPD chromosome. Genetic counseling for pregnant women with such fetuses is crucial to make informed choices.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701935/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prenatal diagnosis of mosaic chromosomal aneuploidy and uniparental disomy and clinical outcomes evaluation of four fetuses.\",\"authors\":\"Shengfang Qin, Xueyan Wang, Jin Wang, Na Xi, Mengjia Yan, Yuxia He, Mengling Ye, Zhuo Zhang, Yan Yin\",\"doi\":\"10.1186/s13039-023-00667-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Few co-occurrence cases of mosaic aneuploidy and uniparental disomy (UPD) chromosomes have been reported in prenatal periods. It is a big challenge for us to predict fetal clinical outcomes with these chromosome abnormalities because of their highly heterogeneous clinical manifestations and limited phenotype attainable by ultrasound.</p><p><strong>Methods: </strong>Amniotic fluid samples were collected from four cases. Karyotype, chromosome microarray analysis, short tandem repeats, and whole exome sequencing were adopted to analyze fetal chromosomal aneuploidy, UPD, and gene variation. Meanwhile, CNVseq analysis proceeded for cultured and uncultured amniocytes in case 2 and case 4 and MS-MLPA for chr11 and chr15 in case 3.</p><p><strong>Results: </strong>All four fetuses showed mosaic chromosomal aneuploidy and UPD simultaneously. The results were: Case 1: T2(7%) and UPD(2)mat(12%). Case 2: T15(60%) and UPD(15)mat(40%). Case 3: 45,X(13%) and genome-wide paternal UPD(20%). Case 4: <10% of T20 and > 90% UPD(20)mat in uncultured amniocyte. By analyzing their formation mechanism of mosaic chromosomal aneuploidy and UPD, at least two adverse genetic events happened during their meiosis and mitosis. The fetus of case 1 presented a benign with a normal intrauterine phenotype, consistent with a low proportion of trisomy cells. However, the other three fetuses had adverse pregnancy outcomes, resulting from the UPD chromosomes with imprinted regions involved or a higher level of mosaic aneuploidy.</p><p><strong>Conclusion: </strong>UPD is often present with mosaic aneuploidy. It is necessary to analyze them simultaneously using a whole battery of analyses for these cases when their chromosomes with imprinted regions are involved or known carriers of a recessive allele. Fetal clinical outcomes were related to the affected chromosomes aneuploidy and UPD, mosaic levels and tissues, methylation status, and homozygous variation of recessive genes on the UPD chromosome. Genetic counseling for pregnant women with such fetuses is crucial to make informed choices.</p>\",\"PeriodicalId\":19099,\"journal\":{\"name\":\"Molecular Cytogenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701935/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cytogenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13039-023-00667-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-023-00667-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Prenatal diagnosis of mosaic chromosomal aneuploidy and uniparental disomy and clinical outcomes evaluation of four fetuses.
Background: Few co-occurrence cases of mosaic aneuploidy and uniparental disomy (UPD) chromosomes have been reported in prenatal periods. It is a big challenge for us to predict fetal clinical outcomes with these chromosome abnormalities because of their highly heterogeneous clinical manifestations and limited phenotype attainable by ultrasound.
Methods: Amniotic fluid samples were collected from four cases. Karyotype, chromosome microarray analysis, short tandem repeats, and whole exome sequencing were adopted to analyze fetal chromosomal aneuploidy, UPD, and gene variation. Meanwhile, CNVseq analysis proceeded for cultured and uncultured amniocytes in case 2 and case 4 and MS-MLPA for chr11 and chr15 in case 3.
Results: All four fetuses showed mosaic chromosomal aneuploidy and UPD simultaneously. The results were: Case 1: T2(7%) and UPD(2)mat(12%). Case 2: T15(60%) and UPD(15)mat(40%). Case 3: 45,X(13%) and genome-wide paternal UPD(20%). Case 4: <10% of T20 and > 90% UPD(20)mat in uncultured amniocyte. By analyzing their formation mechanism of mosaic chromosomal aneuploidy and UPD, at least two adverse genetic events happened during their meiosis and mitosis. The fetus of case 1 presented a benign with a normal intrauterine phenotype, consistent with a low proportion of trisomy cells. However, the other three fetuses had adverse pregnancy outcomes, resulting from the UPD chromosomes with imprinted regions involved or a higher level of mosaic aneuploidy.
Conclusion: UPD is often present with mosaic aneuploidy. It is necessary to analyze them simultaneously using a whole battery of analyses for these cases when their chromosomes with imprinted regions are involved or known carriers of a recessive allele. Fetal clinical outcomes were related to the affected chromosomes aneuploidy and UPD, mosaic levels and tissues, methylation status, and homozygous variation of recessive genes on the UPD chromosome. Genetic counseling for pregnant women with such fetuses is crucial to make informed choices.
期刊介绍:
Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics.
Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to:
-Structural and functional organization of chromosome and nucleus-
Genome variation, expression and evolution-
Animal and plant molecular cytogenetics and genomics-
Chromosome abnormalities and genomic variations in clinical genetics-
Applications in preimplantation, pre- and post-natal diagnosis-
Applications in the central nervous system, cancer and haematology research-
Previously unreported applications of molecular cytogenetic techniques-
Development of new techniques or significant enhancements to established techniques.
This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.