G. S. Seval’nev, M. E. Druzhinina, N. M. Voznesenskaya, D. N. Romanenko, I. I. Samoilova, R. U. Kadyrov
{"title":"高强度奥氏体VNS-53钢在磨损试验中表层的组织变化","authors":"G. S. Seval’nev, M. E. Druzhinina, N. M. Voznesenskaya, D. N. Romanenko, I. I. Samoilova, R. U. Kadyrov","doi":"10.1134/S0036029523070108","DOIUrl":null,"url":null,"abstract":"<div><div><p><b>Abstract</b>—The tribotechnical characteristics of a high-nitrogen austenitic VNS-53 steel are studied under dry sliding friction in contact with a ShKh15-ShD steel. Strain hardening in a thin near-surface layer is found to occur without martensitic transformation, the result of which is a more than 90% increase in the hardness. This steel is found to have a lower friction coefficient and a higher increase in the hardness in the surface contact zone as compared to 08Kh18N10T steel.</p></div></div>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Changes in the Surface Layers of a High-Strength Austenitic VNS-53 Steel during Wear Tests\",\"authors\":\"G. S. Seval’nev, M. E. Druzhinina, N. M. Voznesenskaya, D. N. Romanenko, I. I. Samoilova, R. U. Kadyrov\",\"doi\":\"10.1134/S0036029523070108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><p><b>Abstract</b>—The tribotechnical characteristics of a high-nitrogen austenitic VNS-53 steel are studied under dry sliding friction in contact with a ShKh15-ShD steel. Strain hardening in a thin near-surface layer is found to occur without martensitic transformation, the result of which is a more than 90% increase in the hardness. This steel is found to have a lower friction coefficient and a higher increase in the hardness in the surface contact zone as compared to 08Kh18N10T steel.</p></div></div>\",\"PeriodicalId\":769,\"journal\":{\"name\":\"Russian Metallurgy (Metally)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Metallurgy (Metally)\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0036029523070108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0036029523070108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Structural Changes in the Surface Layers of a High-Strength Austenitic VNS-53 Steel during Wear Tests
Abstract—The tribotechnical characteristics of a high-nitrogen austenitic VNS-53 steel are studied under dry sliding friction in contact with a ShKh15-ShD steel. Strain hardening in a thin near-surface layer is found to occur without martensitic transformation, the result of which is a more than 90% increase in the hardness. This steel is found to have a lower friction coefficient and a higher increase in the hardness in the surface contact zone as compared to 08Kh18N10T steel.
期刊介绍:
Russian Metallurgy (Metally) publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.