V. I. Kopylov, V. N. Chuvil’deev, A. V. Nokhrin, M. Yu. Gryaznov, S. V. Shotin, K. E. Smetanina, N. Yu. Tabachkova
{"title":"ECAP法制备超细晶奥氏体08Kh18N10T钢的强度、弛豫性和耐蚀性:1 .组织与强度","authors":"V. I. Kopylov, V. N. Chuvil’deev, A. V. Nokhrin, M. Yu. Gryaznov, S. V. Shotin, K. E. Smetanina, N. Yu. Tabachkova","doi":"10.1134/S0036029523070066","DOIUrl":null,"url":null,"abstract":"<p>The microstructure and mechanical properties (at room and elevated temperatures) of ultrafine-grained (UFG) 08Kh18N10T steel fabricated by equal-channel angular pressing (ECAP) at temperatures of 150 and 450°C are studied. The UFG steel is found to have a high α' martensite content, and σ-phase nanoparticles precipitate in it upon heating. The UFG steel is shown to have a high ultimate tensile strength and good ductility. The Hall–Petch coefficient of the UFG steel is found to decrease due to the fragmentation of δ-ferrite particles during ECAP.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strength and Relaxation and Corrosion Resistance of Ultrafine-Grained Austenitic 08Kh18N10T Steel Produced by ECAP: I. Microstructure and Strength\",\"authors\":\"V. I. Kopylov, V. N. Chuvil’deev, A. V. Nokhrin, M. Yu. Gryaznov, S. V. Shotin, K. E. Smetanina, N. Yu. Tabachkova\",\"doi\":\"10.1134/S0036029523070066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microstructure and mechanical properties (at room and elevated temperatures) of ultrafine-grained (UFG) 08Kh18N10T steel fabricated by equal-channel angular pressing (ECAP) at temperatures of 150 and 450°C are studied. The UFG steel is found to have a high α' martensite content, and σ-phase nanoparticles precipitate in it upon heating. The UFG steel is shown to have a high ultimate tensile strength and good ductility. The Hall–Petch coefficient of the UFG steel is found to decrease due to the fragmentation of δ-ferrite particles during ECAP.</p>\",\"PeriodicalId\":769,\"journal\":{\"name\":\"Russian Metallurgy (Metally)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Metallurgy (Metally)\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0036029523070066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0036029523070066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Strength and Relaxation and Corrosion Resistance of Ultrafine-Grained Austenitic 08Kh18N10T Steel Produced by ECAP: I. Microstructure and Strength
The microstructure and mechanical properties (at room and elevated temperatures) of ultrafine-grained (UFG) 08Kh18N10T steel fabricated by equal-channel angular pressing (ECAP) at temperatures of 150 and 450°C are studied. The UFG steel is found to have a high α' martensite content, and σ-phase nanoparticles precipitate in it upon heating. The UFG steel is shown to have a high ultimate tensile strength and good ductility. The Hall–Petch coefficient of the UFG steel is found to decrease due to the fragmentation of δ-ferrite particles during ECAP.
期刊介绍:
Russian Metallurgy (Metally) publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.