I. O. Bannykh, A. A. Ashmarin, S. Ya. Betsofen, E. I. Lukin, G. S. Seval’nev, E. V. Blinov, A. A. Aleksandrov
{"title":"拉伸变形对VNS9-Sh钢织构、相组成及α、γ相残余应力的影响","authors":"I. O. Bannykh, A. A. Ashmarin, S. Ya. Betsofen, E. I. Lukin, G. S. Seval’nev, E. V. Blinov, A. A. Aleksandrov","doi":"10.1134/S0036029523070029","DOIUrl":null,"url":null,"abstract":"<p>X-ray diffraction is used to investigate the effect of the tensile strain on the phase composition, texture, and stress state of the α and γ phases in VNS9-Sh alloy. The α phase content increases from 75 to 91% at the surface and from 45–50% to approximately 70% in the subsurface layers during testing until failure. The relative amount of decomposed austenite at different stages of tensile deformation, which reflects the metastability of austenite, is proposed as a parameter to measure the tendency of two-phase steels to the TRIP effect. Compressive stresses up to –1000 MPa form in austenite at the surface in a 0.3-mm-thick initial steel strip due to the positive volume effect of the γ → α transformation. In contrast, tensile stresses are observed in martensite. Heating the metal creates the compressive stresses, but the subsequent cooling causes tensile stresses in martensite because of its lower linear thermal expansion coefficient (LTEC) as compared to austenite.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Tensile Deformation on the Texture, Phase Composition, and Residual Stresses of the α and γ Phases in VNS9-Sh Steel\",\"authors\":\"I. O. Bannykh, A. A. Ashmarin, S. Ya. Betsofen, E. I. Lukin, G. S. Seval’nev, E. V. Blinov, A. A. Aleksandrov\",\"doi\":\"10.1134/S0036029523070029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>X-ray diffraction is used to investigate the effect of the tensile strain on the phase composition, texture, and stress state of the α and γ phases in VNS9-Sh alloy. The α phase content increases from 75 to 91% at the surface and from 45–50% to approximately 70% in the subsurface layers during testing until failure. The relative amount of decomposed austenite at different stages of tensile deformation, which reflects the metastability of austenite, is proposed as a parameter to measure the tendency of two-phase steels to the TRIP effect. Compressive stresses up to –1000 MPa form in austenite at the surface in a 0.3-mm-thick initial steel strip due to the positive volume effect of the γ → α transformation. In contrast, tensile stresses are observed in martensite. Heating the metal creates the compressive stresses, but the subsequent cooling causes tensile stresses in martensite because of its lower linear thermal expansion coefficient (LTEC) as compared to austenite.</p>\",\"PeriodicalId\":769,\"journal\":{\"name\":\"Russian Metallurgy (Metally)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Metallurgy (Metally)\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0036029523070029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0036029523070029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of Tensile Deformation on the Texture, Phase Composition, and Residual Stresses of the α and γ Phases in VNS9-Sh Steel
X-ray diffraction is used to investigate the effect of the tensile strain on the phase composition, texture, and stress state of the α and γ phases in VNS9-Sh alloy. The α phase content increases from 75 to 91% at the surface and from 45–50% to approximately 70% in the subsurface layers during testing until failure. The relative amount of decomposed austenite at different stages of tensile deformation, which reflects the metastability of austenite, is proposed as a parameter to measure the tendency of two-phase steels to the TRIP effect. Compressive stresses up to –1000 MPa form in austenite at the surface in a 0.3-mm-thick initial steel strip due to the positive volume effect of the γ → α transformation. In contrast, tensile stresses are observed in martensite. Heating the metal creates the compressive stresses, but the subsequent cooling causes tensile stresses in martensite because of its lower linear thermal expansion coefficient (LTEC) as compared to austenite.
期刊介绍:
Russian Metallurgy (Metally) publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.