悬浮泊泽维尔流中颗粒应力发展的机器学习方法

IF 2.3 3区 工程技术 Q2 MECHANICS Rheologica Acta Pub Date : 2023-12-02 DOI:10.1007/s00397-023-01413-z
Amanda A. Howard, Justin Dong, Ravi Patel, Marta D’Elia, Martin R. Maxey, Panos Stinis
{"title":"悬浮泊泽维尔流中颗粒应力发展的机器学习方法","authors":"Amanda A. Howard,&nbsp;Justin Dong,&nbsp;Ravi Patel,&nbsp;Marta D’Elia,&nbsp;Martin R. Maxey,&nbsp;Panos Stinis","doi":"10.1007/s00397-023-01413-z","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical simulations are used to study the dynamics of a developing suspension Poiseuille flow with monodispersed and bidispersed neutrally buoyant particles in a planar channel, and machine learning is applied to learn the evolving stresses of the developing suspension. The particle stresses and pressure develop on a slower time scale than the volume fraction, indicating that once the particles reach a steady volume fraction profile, they rearrange to minimize the contact pressure on each particle. We consider the timescale for stress development and how the stress development connects to particle migration. For developing monodisperse suspensions, we present a new physics-informed Galerkin neural network that allows for learning the particle stresses when direct measurements are not possible. We show that when a training set of stress measurements is available, the MOR-physics operator learning method can also capture the particle stresses accurately.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"62 10","pages":"507 - 534"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-023-01413-z.pdf","citationCount":"1","resultStr":"{\"title\":\"Machine learning methods for particle stress development in suspension Poiseuille flows\",\"authors\":\"Amanda A. Howard,&nbsp;Justin Dong,&nbsp;Ravi Patel,&nbsp;Marta D’Elia,&nbsp;Martin R. Maxey,&nbsp;Panos Stinis\",\"doi\":\"10.1007/s00397-023-01413-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Numerical simulations are used to study the dynamics of a developing suspension Poiseuille flow with monodispersed and bidispersed neutrally buoyant particles in a planar channel, and machine learning is applied to learn the evolving stresses of the developing suspension. The particle stresses and pressure develop on a slower time scale than the volume fraction, indicating that once the particles reach a steady volume fraction profile, they rearrange to minimize the contact pressure on each particle. We consider the timescale for stress development and how the stress development connects to particle migration. For developing monodisperse suspensions, we present a new physics-informed Galerkin neural network that allows for learning the particle stresses when direct measurements are not possible. We show that when a training set of stress measurements is available, the MOR-physics operator learning method can also capture the particle stresses accurately.</p></div>\",\"PeriodicalId\":755,\"journal\":{\"name\":\"Rheologica Acta\",\"volume\":\"62 10\",\"pages\":\"507 - 534\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00397-023-01413-z.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rheologica Acta\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00397-023-01413-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-023-01413-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

采用数值模拟方法研究了单分散和双分散中性浮力颗粒在平面通道中形成的悬浮液泊泽维尔流的动力学,并应用机器学习方法学习形成的悬浮液应力的演化过程。颗粒应力和压力的发展速度比体积分数慢,这表明一旦颗粒达到稳定的体积分数曲线,它们会重新排列以最小化每个颗粒的接触压力。我们考虑了应力发展的时间尺度以及应力发展与颗粒迁移的关系。为了开发单分散悬浮液,我们提出了一种新的物理信息Galerkin神经网络,可以在无法直接测量时学习粒子应力。我们表明,当应力测量训练集可用时,莫尔物理算子学习方法也可以准确地捕获颗粒应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning methods for particle stress development in suspension Poiseuille flows

Numerical simulations are used to study the dynamics of a developing suspension Poiseuille flow with monodispersed and bidispersed neutrally buoyant particles in a planar channel, and machine learning is applied to learn the evolving stresses of the developing suspension. The particle stresses and pressure develop on a slower time scale than the volume fraction, indicating that once the particles reach a steady volume fraction profile, they rearrange to minimize the contact pressure on each particle. We consider the timescale for stress development and how the stress development connects to particle migration. For developing monodisperse suspensions, we present a new physics-informed Galerkin neural network that allows for learning the particle stresses when direct measurements are not possible. We show that when a training set of stress measurements is available, the MOR-physics operator learning method can also capture the particle stresses accurately.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rheologica Acta
Rheologica Acta 物理-力学
CiteScore
4.60
自引率
8.70%
发文量
55
审稿时长
3 months
期刊介绍: "Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications. The Scope of Rheologica Acta includes: - Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology - Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food. - Rheology of Solids, chemo-rheology - Electro and magnetorheology - Theory of rheology - Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities - Interfacial rheology Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."
期刊最新文献
The complex rheological behavior of a simple yield stress fluid Orthogonal superposition rheometry of soft core–shell microgels Effect of urea on the linear and nonlinear rheological properties of human serum albumin hydrogels Swimming in viscoplastic fluids Discrepancies in dynamic yield stress measurements of cement pastes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1