A. S. Ustyukhin, V. A. Zelenskii, I. M. Milyaev, M. I. Alymov, D. Yu. Kovalev, V. S. Shustov
{"title":"各向同性Fe-Cr-Co硬质合金的磁滞特性","authors":"A. S. Ustyukhin, V. A. Zelenskii, I. M. Milyaev, M. I. Alymov, D. Yu. Kovalev, V. S. Shustov","doi":"10.1134/S003602952307011X","DOIUrl":null,"url":null,"abstract":"<p>Hard magnetic Fe–30Cr–20Co (wt %) compositions alloyed with to 3 wt % tungsten are obtained by powder metallurgy. The studies of the magnetic properties show that tungsten additions increase coercive force <i>H</i><sub>c</sub> and maximum energy product (<i>BH</i>)<sub>max</sub> but decrease remanence <i>B</i><sub>r</sub>. This effect increases as the tungsten content in the material increases. The maximum values of <i>H</i><sub>c</sub> (55.8 kA/m) and (<i>BH</i>)<sub>max</sub> (17.2 kJ/m<sup>3</sup>) are observed for the alloy with 3 wt % W. In this case, the alloys investigated in the present study were found to be sensitive to heat-treatment conditions. According to X-ray diffraction data, the alloys subjected to a complete heat treatment cycle are characterized by the presence of a marked fraction of the nonmagnetic γ phase; however, in this case, the magnetic properties correspond to those observed for analogous as-cast alloys. In the course of compression tests, all compositions alloyed with tungsten fail before reaching a strain of 20%, whereas, under the same condition, the unalloyed Fe–30Cr–20Co (wt %) composition is deformed without failure. Thus, tungsten additions decrease the plasticity of the material.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Hysteresis Properties of Isotropic Hard Magnetic Fe–Cr–Co Compositions Alloyed with Tungsten\",\"authors\":\"A. S. Ustyukhin, V. A. Zelenskii, I. M. Milyaev, M. I. Alymov, D. Yu. Kovalev, V. S. Shustov\",\"doi\":\"10.1134/S003602952307011X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hard magnetic Fe–30Cr–20Co (wt %) compositions alloyed with to 3 wt % tungsten are obtained by powder metallurgy. The studies of the magnetic properties show that tungsten additions increase coercive force <i>H</i><sub>c</sub> and maximum energy product (<i>BH</i>)<sub>max</sub> but decrease remanence <i>B</i><sub>r</sub>. This effect increases as the tungsten content in the material increases. The maximum values of <i>H</i><sub>c</sub> (55.8 kA/m) and (<i>BH</i>)<sub>max</sub> (17.2 kJ/m<sup>3</sup>) are observed for the alloy with 3 wt % W. In this case, the alloys investigated in the present study were found to be sensitive to heat-treatment conditions. According to X-ray diffraction data, the alloys subjected to a complete heat treatment cycle are characterized by the presence of a marked fraction of the nonmagnetic γ phase; however, in this case, the magnetic properties correspond to those observed for analogous as-cast alloys. In the course of compression tests, all compositions alloyed with tungsten fail before reaching a strain of 20%, whereas, under the same condition, the unalloyed Fe–30Cr–20Co (wt %) composition is deformed without failure. Thus, tungsten additions decrease the plasticity of the material.</p>\",\"PeriodicalId\":769,\"journal\":{\"name\":\"Russian Metallurgy (Metally)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Metallurgy (Metally)\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S003602952307011X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S003602952307011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Magnetic Hysteresis Properties of Isotropic Hard Magnetic Fe–Cr–Co Compositions Alloyed with Tungsten
Hard magnetic Fe–30Cr–20Co (wt %) compositions alloyed with to 3 wt % tungsten are obtained by powder metallurgy. The studies of the magnetic properties show that tungsten additions increase coercive force Hc and maximum energy product (BH)max but decrease remanence Br. This effect increases as the tungsten content in the material increases. The maximum values of Hc (55.8 kA/m) and (BH)max (17.2 kJ/m3) are observed for the alloy with 3 wt % W. In this case, the alloys investigated in the present study were found to be sensitive to heat-treatment conditions. According to X-ray diffraction data, the alloys subjected to a complete heat treatment cycle are characterized by the presence of a marked fraction of the nonmagnetic γ phase; however, in this case, the magnetic properties correspond to those observed for analogous as-cast alloys. In the course of compression tests, all compositions alloyed with tungsten fail before reaching a strain of 20%, whereas, under the same condition, the unalloyed Fe–30Cr–20Co (wt %) composition is deformed without failure. Thus, tungsten additions decrease the plasticity of the material.
期刊介绍:
Russian Metallurgy (Metally) publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.