{"title":"可容许的伯努利相关","authors":"Mark Huber, Nevena Marić","doi":"10.1186/s40488-019-0091-5","DOIUrl":null,"url":null,"abstract":"A multivariate symmetric Bernoulli distribution has marginals that are uniform over the pair {0,1}. Consider the problem of sampling from this distribution given a prescribed correlation between each pair of variables. Not all correlation structures can be attained. Here we completely characterize the admissible correlation vectors as those given by convex combinations of simpler distributions. This allows us to bijectively relate the correlations to the well-known CUTn polytope, as well as determine if the correlation is possible through a linear programming formulation.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Admissible Bernoulli correlations\",\"authors\":\"Mark Huber, Nevena Marić\",\"doi\":\"10.1186/s40488-019-0091-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multivariate symmetric Bernoulli distribution has marginals that are uniform over the pair {0,1}. Consider the problem of sampling from this distribution given a prescribed correlation between each pair of variables. Not all correlation structures can be attained. Here we completely characterize the admissible correlation vectors as those given by convex combinations of simpler distributions. This allows us to bijectively relate the correlations to the well-known CUTn polytope, as well as determine if the correlation is possible through a linear programming formulation.\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-019-0091-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-019-0091-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
A multivariate symmetric Bernoulli distribution has marginals that are uniform over the pair {0,1}. Consider the problem of sampling from this distribution given a prescribed correlation between each pair of variables. Not all correlation structures can be attained. Here we completely characterize the admissible correlation vectors as those given by convex combinations of simpler distributions. This allows us to bijectively relate the correlations to the well-known CUTn polytope, as well as determine if the correlation is possible through a linear programming formulation.