Alexander D. Knudson, Tomasz J. Kozubowski, Anna K. Panorska, A. Grant Schissler
{"title":"高维相关计数数据的灵活多元模型","authors":"Alexander D. Knudson, Tomasz J. Kozubowski, Anna K. Panorska, A. Grant Schissler","doi":"10.1186/s40488-021-00119-y","DOIUrl":null,"url":null,"abstract":"We propose a flexible multivariate stochastic model for over-dispersed count data. Our methodology is built upon mixed Poisson random vectors (Y1,…,Yd), where the {Yi} are conditionally independent Poisson random variables. The stochastic rates of the {Yi} are multivariate distributions with arbitrary non-negative margins linked by a copula function. We present basic properties of these mixed Poisson multivariate distributions and provide several examples. A particular case with geometric and negative binomial marginal distributions is studied in detail. We illustrate an application of our model by conducting a high-dimensional simulation motivated by RNA-sequencing data.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A flexible multivariate model for high-dimensional correlated count data\",\"authors\":\"Alexander D. Knudson, Tomasz J. Kozubowski, Anna K. Panorska, A. Grant Schissler\",\"doi\":\"10.1186/s40488-021-00119-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a flexible multivariate stochastic model for over-dispersed count data. Our methodology is built upon mixed Poisson random vectors (Y1,…,Yd), where the {Yi} are conditionally independent Poisson random variables. The stochastic rates of the {Yi} are multivariate distributions with arbitrary non-negative margins linked by a copula function. We present basic properties of these mixed Poisson multivariate distributions and provide several examples. A particular case with geometric and negative binomial marginal distributions is studied in detail. We illustrate an application of our model by conducting a high-dimensional simulation motivated by RNA-sequencing data.\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-021-00119-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-021-00119-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
A flexible multivariate model for high-dimensional correlated count data
We propose a flexible multivariate stochastic model for over-dispersed count data. Our methodology is built upon mixed Poisson random vectors (Y1,…,Yd), where the {Yi} are conditionally independent Poisson random variables. The stochastic rates of the {Yi} are multivariate distributions with arbitrary non-negative margins linked by a copula function. We present basic properties of these mixed Poisson multivariate distributions and provide several examples. A particular case with geometric and negative binomial marginal distributions is studied in detail. We illustrate an application of our model by conducting a high-dimensional simulation motivated by RNA-sequencing data.