一种新的扩展正态回归模型:仿真与应用

Maria C.S. Lima, Gauss M. Cordeiro, Edwin M.M. Ortega, Abraão D.C. Nascimento
{"title":"一种新的扩展正态回归模型:仿真与应用","authors":"Maria C.S. Lima, Gauss M. Cordeiro, Edwin M.M. Ortega, Abraão D.C. Nascimento","doi":"10.1186/s40488-019-0098-y","DOIUrl":null,"url":null,"abstract":"Various applications in natural science require models more accurate than well-known distributions. In this context, several generators of distributions have been recently proposed. We introduce a new four-parameter extended normal (EN) distribution, which can provide better fits than the skew-normal and beta normal distributions as proved empirically in two applications to real data. We present Monte Carlo simulations to investigate the effectiveness of the EN distribution using the Kullback-Leibler divergence criterion. The classical regression model is not recommended for most practical applications because it oversimplifies real world problems. We propose an EN regression model and show its usefulness in practice by comparing with other regression models. We adopt maximum likelihood method for estimating the model parameters of both proposed distribution and regression model.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new extended normal regression model: simulations and applications\",\"authors\":\"Maria C.S. Lima, Gauss M. Cordeiro, Edwin M.M. Ortega, Abraão D.C. Nascimento\",\"doi\":\"10.1186/s40488-019-0098-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various applications in natural science require models more accurate than well-known distributions. In this context, several generators of distributions have been recently proposed. We introduce a new four-parameter extended normal (EN) distribution, which can provide better fits than the skew-normal and beta normal distributions as proved empirically in two applications to real data. We present Monte Carlo simulations to investigate the effectiveness of the EN distribution using the Kullback-Leibler divergence criterion. The classical regression model is not recommended for most practical applications because it oversimplifies real world problems. We propose an EN regression model and show its usefulness in practice by comparing with other regression models. We adopt maximum likelihood method for estimating the model parameters of both proposed distribution and regression model.\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-019-0098-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-019-0098-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

自然科学中的各种应用需要比已知分布更精确的模型。在这方面,最近提出了几个分布生成器。我们引入了一种新的四参数扩展正态分布(EN),它比斜正态分布和beta正态分布具有更好的拟合效果,并在两个实际数据应用中得到了经验证明。我们利用Kullback-Leibler散度准则进行了蒙特卡罗模拟来研究EN分布的有效性。经典回归模型不推荐用于大多数实际应用,因为它过于简化了现实世界的问题。我们提出了一个EN回归模型,并通过与其他回归模型的比较,证明了它在实践中的有效性。我们采用极大似然法对所提出的分布和回归模型的模型参数进行估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new extended normal regression model: simulations and applications
Various applications in natural science require models more accurate than well-known distributions. In this context, several generators of distributions have been recently proposed. We introduce a new four-parameter extended normal (EN) distribution, which can provide better fits than the skew-normal and beta normal distributions as proved empirically in two applications to real data. We present Monte Carlo simulations to investigate the effectiveness of the EN distribution using the Kullback-Leibler divergence criterion. The classical regression model is not recommended for most practical applications because it oversimplifies real world problems. We propose an EN regression model and show its usefulness in practice by comparing with other regression models. We adopt maximum likelihood method for estimating the model parameters of both proposed distribution and regression model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
A generalization to the log-inverse Weibull distribution and its applications in cancer research Approximations of conditional probability density functions in Lebesgue spaces via mixture of experts models Structural properties of generalised Planck distributions New class of Lindley distributions: properties and applications Tolerance intervals in statistical software and robustness under model misspecification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1