南卡罗来纳州洪水数据的时空分析

Haigang Liu, David B. Hitchcock, S. Zahra Samadi
{"title":"南卡罗来纳州洪水数据的时空分析","authors":"Haigang Liu, David B. Hitchcock, S. Zahra Samadi","doi":"10.1186/s40488-020-00112-x","DOIUrl":null,"url":null,"abstract":"To investigate the relationship between flood gage height and precipitation in South Carolina from 2012 to 2016, we built a conditional autoregressive (CAR) model using a Bayesian hierarchical framework. This approach allows the modelling of the main spatio-temporal properties of water height dynamics over multiple locations, accounting for the effect of river network, geomorphology, and forcing rainfall. In this respect, a proximity matrix based on watershed information was used to capture the spatial structure of gage height measurements in and around South Carolina. The temporal structure was handled by a first-order autoregressive term in the model. Several covariates, including the elevation of the sites and effects of seasonality, were examined, along with daily rainfall amount. A non-normal error structure was used to account for the heavy-tailed distribution of maximum gage heights. The proposed model captured some key features of the flood process such as seasonality and a stronger association between precipitation and flooding during summer season. The model is able to forecast short term flood gage height which is crucial for informed emergency decision. As a byproduct, we also developed a Python library to retrieve and handle environmental data provided by some main agencies in the United States. This library can be of general usefulness for studies requiring rainfall, flow, and geomorphological information over specific areas of the conterminous US.","PeriodicalId":52216,"journal":{"name":"Journal of Statistical Distributions and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatio-temporal analysis of flood data from South Carolina\",\"authors\":\"Haigang Liu, David B. Hitchcock, S. Zahra Samadi\",\"doi\":\"10.1186/s40488-020-00112-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the relationship between flood gage height and precipitation in South Carolina from 2012 to 2016, we built a conditional autoregressive (CAR) model using a Bayesian hierarchical framework. This approach allows the modelling of the main spatio-temporal properties of water height dynamics over multiple locations, accounting for the effect of river network, geomorphology, and forcing rainfall. In this respect, a proximity matrix based on watershed information was used to capture the spatial structure of gage height measurements in and around South Carolina. The temporal structure was handled by a first-order autoregressive term in the model. Several covariates, including the elevation of the sites and effects of seasonality, were examined, along with daily rainfall amount. A non-normal error structure was used to account for the heavy-tailed distribution of maximum gage heights. The proposed model captured some key features of the flood process such as seasonality and a stronger association between precipitation and flooding during summer season. The model is able to forecast short term flood gage height which is crucial for informed emergency decision. As a byproduct, we also developed a Python library to retrieve and handle environmental data provided by some main agencies in the United States. This library can be of general usefulness for studies requiring rainfall, flow, and geomorphological information over specific areas of the conterminous US.\",\"PeriodicalId\":52216,\"journal\":{\"name\":\"Journal of Statistical Distributions and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Distributions and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40488-020-00112-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Distributions and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40488-020-00112-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

为了研究2012 - 2016年美国南卡罗来纳州洪水水位高度与降水的关系,我们采用贝叶斯分层框架建立了条件自回归(CAR)模型。这种方法可以模拟多个地点的水高动态的主要时空特性,考虑到河网、地貌和强迫降雨的影响。在这方面,基于流域信息的接近矩阵被用于捕捉南卡罗来纳州及其周边地区的测量高度的空间结构。模型中的时间结构由一阶自回归项处理。研究了几个协变量,包括站点的海拔和季节性的影响,以及日降雨量。采用非正态误差结构来解释最大规格高度的重尾分布。提出的模型捕捉了洪水过程的一些关键特征,如季节性和夏季降水与洪水之间更强的关联。该模型能够预测短期水位高度,对应急决策具有重要意义。作为副产品,我们还开发了一个Python库来检索和处理美国一些主要机构提供的环境数据。这个库对于需要降雨、流量和地形信息的研究来说是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatio-temporal analysis of flood data from South Carolina
To investigate the relationship between flood gage height and precipitation in South Carolina from 2012 to 2016, we built a conditional autoregressive (CAR) model using a Bayesian hierarchical framework. This approach allows the modelling of the main spatio-temporal properties of water height dynamics over multiple locations, accounting for the effect of river network, geomorphology, and forcing rainfall. In this respect, a proximity matrix based on watershed information was used to capture the spatial structure of gage height measurements in and around South Carolina. The temporal structure was handled by a first-order autoregressive term in the model. Several covariates, including the elevation of the sites and effects of seasonality, were examined, along with daily rainfall amount. A non-normal error structure was used to account for the heavy-tailed distribution of maximum gage heights. The proposed model captured some key features of the flood process such as seasonality and a stronger association between precipitation and flooding during summer season. The model is able to forecast short term flood gage height which is crucial for informed emergency decision. As a byproduct, we also developed a Python library to retrieve and handle environmental data provided by some main agencies in the United States. This library can be of general usefulness for studies requiring rainfall, flow, and geomorphological information over specific areas of the conterminous US.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Distributions and Applications
Journal of Statistical Distributions and Applications Decision Sciences-Statistics, Probability and Uncertainty
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
A generalization to the log-inverse Weibull distribution and its applications in cancer research Approximations of conditional probability density functions in Lebesgue spaces via mixture of experts models Structural properties of generalised Planck distributions New class of Lindley distributions: properties and applications Tolerance intervals in statistical software and robustness under model misspecification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1