系统发育与群体遗传学处理系统综述

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Reconfigurable Technology and Systems Pub Date : 2023-06-20 DOI:https://dl.acm.org/doi/10.1145/3588033
Reinout Corts, Nikolaos Alachiotis
{"title":"系统发育与群体遗传学处理系统综述","authors":"Reinout Corts, Nikolaos Alachiotis","doi":"https://dl.acm.org/doi/10.1145/3588033","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 pandemic brought Bioinformatics into the spotlight, revealing that several existing methods, algorithms, and tools were not well prepared to handle large amounts of genomic data efficiently. This led to prohibitively long execution times and the need to reduce the extent of analyses to obtain results in a reasonable amount of time. In this survey, we review available high-performance computing and hardware-accelerated systems based on FPGA and GPU technology. Optimized and hardware-accelerated systems can conduct more thorough analyses considerably faster than pure software implementations, allowing to reach important conclusions in a timely manner to drive scientific discoveries. We discuss the reasons that are currently hindering high-performance solutions from being widely deployed in real-world biological analyses and describe a research direction that can pave the way to enable this.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"113 ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey of Processing Systems for Phylogenetics and Population Genetics\",\"authors\":\"Reinout Corts, Nikolaos Alachiotis\",\"doi\":\"https://dl.acm.org/doi/10.1145/3588033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The COVID-19 pandemic brought Bioinformatics into the spotlight, revealing that several existing methods, algorithms, and tools were not well prepared to handle large amounts of genomic data efficiently. This led to prohibitively long execution times and the need to reduce the extent of analyses to obtain results in a reasonable amount of time. In this survey, we review available high-performance computing and hardware-accelerated systems based on FPGA and GPU technology. Optimized and hardware-accelerated systems can conduct more thorough analyses considerably faster than pure software implementations, allowing to reach important conclusions in a timely manner to drive scientific discoveries. We discuss the reasons that are currently hindering high-performance solutions from being widely deployed in real-world biological analyses and describe a research direction that can pave the way to enable this.</p>\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"113 \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3588033\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3588033","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

2019冠状病毒病大流行使生物信息学成为人们关注的焦点,揭示了一些现有的方法、算法和工具尚未为有效处理大量基因组数据做好充分准备。这导致执行时间过长,并且需要减少分析的范围,以便在合理的时间内获得结果。在本调查中,我们回顾了基于FPGA和GPU技术的现有高性能计算和硬件加速系统。优化和硬件加速的系统可以比纯软件实现更快地进行更彻底的分析,从而及时得出重要的结论,从而推动科学发现。我们讨论了目前阻碍高性能解决方案在现实世界生物分析中广泛应用的原因,并描述了一个可以为实现这一目标铺平道路的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey of Processing Systems for Phylogenetics and Population Genetics

The COVID-19 pandemic brought Bioinformatics into the spotlight, revealing that several existing methods, algorithms, and tools were not well prepared to handle large amounts of genomic data efficiently. This led to prohibitively long execution times and the need to reduce the extent of analyses to obtain results in a reasonable amount of time. In this survey, we review available high-performance computing and hardware-accelerated systems based on FPGA and GPU technology. Optimized and hardware-accelerated systems can conduct more thorough analyses considerably faster than pure software implementations, allowing to reach important conclusions in a timely manner to drive scientific discoveries. We discuss the reasons that are currently hindering high-performance solutions from being widely deployed in real-world biological analyses and describe a research direction that can pave the way to enable this.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
期刊最新文献
End-to-end codesign of Hessian-aware quantized neural networks for FPGAs DyRecMul: Fast and Low-Cost Approximate Multiplier for FPGAs using Dynamic Reconfiguration Dynamic-ACTS - A Dynamic Graph Analytics Accelerator For HBM-Enabled FPGAs NC-Library: Expanding SystemC Capabilities for Nested reConfigurable Hardware Modelling PQA: Exploring the Potential of Product Quantization in DNN Hardware Acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1