Emanuele Del Sozzo, Davide Conficconi, Kentaro Sano
{"title":"跨越时间和空间:Senju在单个和多个fpga上缩放迭代模板循环加速器的方法","authors":"Emanuele Del Sozzo, Davide Conficconi, Kentaro Sano","doi":"10.1145/3634920","DOIUrl":null,"url":null,"abstract":"<p>Stencil-based applications play an essential role in high-performance systems as they occur in numerous computational areas, such as partial differential equation solving. In this context, Iterative Stencil Loops (ISLs) represent a prominent and well-known algorithmic class within the stencil domain. Specifically, ISL-based calculations iteratively apply the same stencil to a multi-dimensional point grid multiple times or until convergence. However, due to their iterative and intensive nature, ISLs are highly performance-hungry, demanding specialized solutions. Here, Field Programmable Gate Arrays (FPGAs) represent a valid architectural choice as they enable the design of custom, parallel, and scalable ISL accelerators. Besides, the regular structure of ISLs makes them an ideal candidate for automatic optimization and generation flows. For these reasons, this paper introduces <span>Senju</span>, an automation framework for the design of highly parallel ISL accelerators targeting single-/multi-FPGA systems. Given an input description, <span>Senju</span> automates the entire design process and provides accurate performance estimations. The experimental evaluation shows remarkable and scalable results, outperforming single- and multi-FPGA literature approaches under different metrics. Finally, we present a new analysis of temporal and spatial parallelism trade-offs in a real-case scenario and discuss our performance through a single- and novel specialized multi-FPGA formulation of the Roofline Model.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"42 12","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Across Time and Space: Senju’s Approach for Scaling Iterative Stencil Loop Accelerators on Single and Multiple FPGAs\",\"authors\":\"Emanuele Del Sozzo, Davide Conficconi, Kentaro Sano\",\"doi\":\"10.1145/3634920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stencil-based applications play an essential role in high-performance systems as they occur in numerous computational areas, such as partial differential equation solving. In this context, Iterative Stencil Loops (ISLs) represent a prominent and well-known algorithmic class within the stencil domain. Specifically, ISL-based calculations iteratively apply the same stencil to a multi-dimensional point grid multiple times or until convergence. However, due to their iterative and intensive nature, ISLs are highly performance-hungry, demanding specialized solutions. Here, Field Programmable Gate Arrays (FPGAs) represent a valid architectural choice as they enable the design of custom, parallel, and scalable ISL accelerators. Besides, the regular structure of ISLs makes them an ideal candidate for automatic optimization and generation flows. For these reasons, this paper introduces <span>Senju</span>, an automation framework for the design of highly parallel ISL accelerators targeting single-/multi-FPGA systems. Given an input description, <span>Senju</span> automates the entire design process and provides accurate performance estimations. The experimental evaluation shows remarkable and scalable results, outperforming single- and multi-FPGA literature approaches under different metrics. Finally, we present a new analysis of temporal and spatial parallelism trade-offs in a real-case scenario and discuss our performance through a single- and novel specialized multi-FPGA formulation of the Roofline Model.</p>\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"42 12\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3634920\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3634920","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Across Time and Space: Senju’s Approach for Scaling Iterative Stencil Loop Accelerators on Single and Multiple FPGAs
Stencil-based applications play an essential role in high-performance systems as they occur in numerous computational areas, such as partial differential equation solving. In this context, Iterative Stencil Loops (ISLs) represent a prominent and well-known algorithmic class within the stencil domain. Specifically, ISL-based calculations iteratively apply the same stencil to a multi-dimensional point grid multiple times or until convergence. However, due to their iterative and intensive nature, ISLs are highly performance-hungry, demanding specialized solutions. Here, Field Programmable Gate Arrays (FPGAs) represent a valid architectural choice as they enable the design of custom, parallel, and scalable ISL accelerators. Besides, the regular structure of ISLs makes them an ideal candidate for automatic optimization and generation flows. For these reasons, this paper introduces Senju, an automation framework for the design of highly parallel ISL accelerators targeting single-/multi-FPGA systems. Given an input description, Senju automates the entire design process and provides accurate performance estimations. The experimental evaluation shows remarkable and scalable results, outperforming single- and multi-FPGA literature approaches under different metrics. Finally, we present a new analysis of temporal and spatial parallelism trade-offs in a real-case scenario and discuss our performance through a single- and novel specialized multi-FPGA formulation of the Roofline Model.
期刊介绍:
TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right.
Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications.
-The board and systems architectures of a reconfigurable platform.
-Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity.
-Languages and compilers for reconfigurable systems.
-Logic synthesis and related tools, as they relate to reconfigurable systems.
-Applications on which success can be demonstrated.
The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.)
In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.