Dina Abdel-Fattah, Mats Danielson, Love Ekenberg, Regine Hock, Sarah Trainor
{"title":"结构化决策过程在冰冻圈灾害规划中的应用:以阿拉斯加白令海冰川涌流对地方州规划的影响为例","authors":"Dina Abdel-Fattah, Mats Danielson, Love Ekenberg, Regine Hock, Sarah Trainor","doi":"10.1002/mcda.1825","DOIUrl":null,"url":null,"abstract":"<p>Surging glaciers are glaciers that experience rapidly accelerated glacier flow over a comparatively short period of time. Though relatively rare worldwide, Alaska is home to the largest number of surge-type glaciers globally. However, their impact on the broader socioecological system in the state is both poorly understood and under-researched, which poses a challenge in developing appropriate sustainability decisions in Alaska. We investigated how the surge patterns of the Bering Glacier in Alaska have potentially devastating effects on the local ecological biodiversity of its watershed via a structured decision-making analysis of the different possible consequences. Specifically, this analysis was conducted to explore the various outcomes of a Bering Glacier surge particularly if humans have an increased presence near the glacier due to the area potentially becoming a state park. This work explored the benefits of applying a risk and decision analytical framework in a cryosphere context, to better understand the socioeconomic impact of glacier surges. This is a novel approach in which a decision analysis tool was used to better understand an environmental sustainability challenge, offering an innovative method to support the achievement of the United Nations Sustainability Development Goals in Alaska. We therefore emphasise the need for integrated biophysical and socioeconomic analyses when it comes to understanding glacier hazards. Our research highlights the importance of understanding and researching biophysical changes as well as using a structured decision-making process for complicated hazard planning scenarios, exemplified via glaciated regions in Alaska, in order to create adaptation strategies that are sustainable and encompass the range of possible outcomes.</p>","PeriodicalId":45876,"journal":{"name":"Journal of Multi-Criteria Decision Analysis","volume":"31 1-2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mcda.1825","citationCount":"0","resultStr":"{\"title\":\"Application of a structured decision-making process in cryospheric hazard planning: Case study of Bering Glacier surges on local state planning in Alaska\",\"authors\":\"Dina Abdel-Fattah, Mats Danielson, Love Ekenberg, Regine Hock, Sarah Trainor\",\"doi\":\"10.1002/mcda.1825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surging glaciers are glaciers that experience rapidly accelerated glacier flow over a comparatively short period of time. Though relatively rare worldwide, Alaska is home to the largest number of surge-type glaciers globally. However, their impact on the broader socioecological system in the state is both poorly understood and under-researched, which poses a challenge in developing appropriate sustainability decisions in Alaska. We investigated how the surge patterns of the Bering Glacier in Alaska have potentially devastating effects on the local ecological biodiversity of its watershed via a structured decision-making analysis of the different possible consequences. Specifically, this analysis was conducted to explore the various outcomes of a Bering Glacier surge particularly if humans have an increased presence near the glacier due to the area potentially becoming a state park. This work explored the benefits of applying a risk and decision analytical framework in a cryosphere context, to better understand the socioeconomic impact of glacier surges. This is a novel approach in which a decision analysis tool was used to better understand an environmental sustainability challenge, offering an innovative method to support the achievement of the United Nations Sustainability Development Goals in Alaska. We therefore emphasise the need for integrated biophysical and socioeconomic analyses when it comes to understanding glacier hazards. Our research highlights the importance of understanding and researching biophysical changes as well as using a structured decision-making process for complicated hazard planning scenarios, exemplified via glaciated regions in Alaska, in order to create adaptation strategies that are sustainable and encompass the range of possible outcomes.</p>\",\"PeriodicalId\":45876,\"journal\":{\"name\":\"Journal of Multi-Criteria Decision Analysis\",\"volume\":\"31 1-2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mcda.1825\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multi-Criteria Decision Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mcda.1825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multi-Criteria Decision Analysis","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mcda.1825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
Application of a structured decision-making process in cryospheric hazard planning: Case study of Bering Glacier surges on local state planning in Alaska
Surging glaciers are glaciers that experience rapidly accelerated glacier flow over a comparatively short period of time. Though relatively rare worldwide, Alaska is home to the largest number of surge-type glaciers globally. However, their impact on the broader socioecological system in the state is both poorly understood and under-researched, which poses a challenge in developing appropriate sustainability decisions in Alaska. We investigated how the surge patterns of the Bering Glacier in Alaska have potentially devastating effects on the local ecological biodiversity of its watershed via a structured decision-making analysis of the different possible consequences. Specifically, this analysis was conducted to explore the various outcomes of a Bering Glacier surge particularly if humans have an increased presence near the glacier due to the area potentially becoming a state park. This work explored the benefits of applying a risk and decision analytical framework in a cryosphere context, to better understand the socioeconomic impact of glacier surges. This is a novel approach in which a decision analysis tool was used to better understand an environmental sustainability challenge, offering an innovative method to support the achievement of the United Nations Sustainability Development Goals in Alaska. We therefore emphasise the need for integrated biophysical and socioeconomic analyses when it comes to understanding glacier hazards. Our research highlights the importance of understanding and researching biophysical changes as well as using a structured decision-making process for complicated hazard planning scenarios, exemplified via glaciated regions in Alaska, in order to create adaptation strategies that are sustainable and encompass the range of possible outcomes.
期刊介绍:
The Journal of Multi-Criteria Decision Analysis was launched in 1992, and from the outset has aimed to be the repository of choice for papers covering all aspects of MCDA/MCDM. The journal provides an international forum for the presentation and discussion of all aspects of research, application and evaluation of multi-criteria decision analysis, and publishes material from a variety of disciplines and all schools of thought. Papers addressing mathematical, theoretical, and behavioural aspects are welcome, as are case studies, applications and evaluation of techniques and methodologies.