电磁侧通道泄漏分析的硅相关仿真方法

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Journal on Emerging Technologies in Computing Systems Pub Date : 2022-12-09 DOI:https://dl.acm.org/doi/10.1145/3568957
Kazuki Monta, Lang Lin, Jimin Wen, Harsh Shrivastav, Calvin Chow, Hua Chen, Joao Geada, Sreeja Chowdhury, Nitin Pundir, Norman Chang, Makoto Nagata
{"title":"电磁侧通道泄漏分析的硅相关仿真方法","authors":"Kazuki Monta, Lang Lin, Jimin Wen, Harsh Shrivastav, Calvin Chow, Hua Chen, Joao Geada, Sreeja Chowdhury, Nitin Pundir, Norman Chang, Makoto Nagata","doi":"https://dl.acm.org/doi/10.1145/3568957","DOIUrl":null,"url":null,"abstract":"<p>Cryptography hardware is vulnerable to side-channel (SC) attacks on power supply current flow and electromagnetic (EM) emission. This article proposes simulation-based power and EM side-channel leakage analysis (SCLA) techniques on a cryptographic integrated circuit (IC) chip in system level assembly. SCLA measures SC leakage metrics including T-score, SC leakage score, and the number of measurement traces to disclosure, leveraged by a secure system-on-chip design flow toward SC attack resiliency and SC leakage sign off. Power SCLA features the tracking of security sensitive registers within cryptographic logic paths and the automatic assignments of probe points on associated physical power nets. Power supply current traces are efficiently simulated for the large set of input payloads, with direct vector-based and vector-less random switching controls. EM SCLA evaluates magnetic fields created by every piece of metal wiring in metal stacks where power supply current of cryptographic processing flows. The EM emission and EM SCLA from the backside Si surface of an IC chip in flip-chip packaging are experimentally examined with a 0.13 μm test chip. The proposed simulation-based SCLA exhibits the SC leakage metrics of on-chip location and direction dependency as accurately as in the measurements.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"99 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon-correlated Simulation Methodology of EM Side-channel Leakage Analysis\",\"authors\":\"Kazuki Monta, Lang Lin, Jimin Wen, Harsh Shrivastav, Calvin Chow, Hua Chen, Joao Geada, Sreeja Chowdhury, Nitin Pundir, Norman Chang, Makoto Nagata\",\"doi\":\"https://dl.acm.org/doi/10.1145/3568957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cryptography hardware is vulnerable to side-channel (SC) attacks on power supply current flow and electromagnetic (EM) emission. This article proposes simulation-based power and EM side-channel leakage analysis (SCLA) techniques on a cryptographic integrated circuit (IC) chip in system level assembly. SCLA measures SC leakage metrics including T-score, SC leakage score, and the number of measurement traces to disclosure, leveraged by a secure system-on-chip design flow toward SC attack resiliency and SC leakage sign off. Power SCLA features the tracking of security sensitive registers within cryptographic logic paths and the automatic assignments of probe points on associated physical power nets. Power supply current traces are efficiently simulated for the large set of input payloads, with direct vector-based and vector-less random switching controls. EM SCLA evaluates magnetic fields created by every piece of metal wiring in metal stacks where power supply current of cryptographic processing flows. The EM emission and EM SCLA from the backside Si surface of an IC chip in flip-chip packaging are experimentally examined with a 0.13 μm test chip. The proposed simulation-based SCLA exhibits the SC leakage metrics of on-chip location and direction dependency as accurately as in the measurements.</p>\",\"PeriodicalId\":50924,\"journal\":{\"name\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"volume\":\"99 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3568957\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3568957","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

加密硬件容易受到电源电流和电磁发射的侧信道攻击。本文提出了一种基于仿真的系统级集成电路(IC)芯片的功率和电磁侧信道泄漏分析(SCLA)技术。sca测量SC泄漏指标,包括t分数,SC泄漏分数,以及测量跟踪到披露的数量,通过安全的片上系统设计流程来实现SC攻击弹性和SC泄漏签名。电力sca的特点是在加密逻辑路径内跟踪安全敏感寄存器,并在相关的物理电力网上自动分配探测点。通过直接基于矢量和无矢量的随机开关控制,有效地模拟了大量输入有效负载的电源电流走线。EM scra对加密处理电源电流流过的金属堆中每根金属导线产生的磁场进行评估。采用0.13 μm测试芯片,对倒装芯片中IC芯片背面硅表面的电磁发射和电磁自旋能谱进行了实验研究。所提出的基于仿真的sca显示了芯片上位置和方向依赖的SC泄漏度量,与测量结果一样准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silicon-correlated Simulation Methodology of EM Side-channel Leakage Analysis

Cryptography hardware is vulnerable to side-channel (SC) attacks on power supply current flow and electromagnetic (EM) emission. This article proposes simulation-based power and EM side-channel leakage analysis (SCLA) techniques on a cryptographic integrated circuit (IC) chip in system level assembly. SCLA measures SC leakage metrics including T-score, SC leakage score, and the number of measurement traces to disclosure, leveraged by a secure system-on-chip design flow toward SC attack resiliency and SC leakage sign off. Power SCLA features the tracking of security sensitive registers within cryptographic logic paths and the automatic assignments of probe points on associated physical power nets. Power supply current traces are efficiently simulated for the large set of input payloads, with direct vector-based and vector-less random switching controls. EM SCLA evaluates magnetic fields created by every piece of metal wiring in metal stacks where power supply current of cryptographic processing flows. The EM emission and EM SCLA from the backside Si surface of an IC chip in flip-chip packaging are experimentally examined with a 0.13 μm test chip. The proposed simulation-based SCLA exhibits the SC leakage metrics of on-chip location and direction dependency as accurately as in the measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems 工程技术-工程:电子与电气
CiteScore
4.80
自引率
4.50%
发文量
86
审稿时长
3 months
期刊介绍: The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system. The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors
期刊最新文献
PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties SAT-based Exact Modulo Scheduling Mapping for Resource-Constrained CGRAs Towards practical superconducting accelerators for machine learning using U-SFQ Towards Energy-Efficient Spiking Neural Networks: A Robust Hybrid CMOS-Memristive Accelerator An Analysis of Various Design Pathways Towards Multi-Terabit Photonic On-Interposer Interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1