建立一个开放的生物协议表示

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Journal on Emerging Technologies in Computing Systems Pub Date : 2023-06-23 DOI:https://dl.acm.org/doi/10.1145/3604568
Bryan Bartley, Jacob Beal, Miles Rogers, Daniel Bryce, Robert P. Goldman, Benjamin Keller, Peter Lee, Vanessa Biggers, Joshua Nowak, Mark Weston
{"title":"建立一个开放的生物协议表示","authors":"Bryan Bartley, Jacob Beal, Miles Rogers, Daniel Bryce, Robert P. Goldman, Benjamin Keller, Peter Lee, Vanessa Biggers, Joshua Nowak, Mark Weston","doi":"https://dl.acm.org/doi/10.1145/3604568","DOIUrl":null,"url":null,"abstract":"<p>Laboratory protocols are critical to biological research and development, yet difficult to communicate and reproduce across projects, investigators, and organizations. While many attempts have been made to address this challenge, there is currently no available protocol representation that is unambiguous enough for precise interpretation and automation, yet simultaneously “human friendly” and abstract enough to enable reuse and adaptation. The Laboratory Open Protocol language (LabOP) is a free and open protocol representation aiming to address this gap, building on a foundation of UML, Autoprotocol, Aquarium, SBOL RDF, and the Provenance Ontology. LabOP provides a linked-data representation both for protocols and for records of their execution and the resulting data, as well as a framework for exporting from LabOP for execution by either humans or laboratory automation. LabOP is currently implemented in the form of an RDF knowledge representation, specification document, and Python library, and supports execution as manual “paper protocols,” by Autoprotocol or by Opentrons. From this initial implementation, LabOP is being further developed as an open community effort.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"95 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building an Open Representation for Biological Protocols\",\"authors\":\"Bryan Bartley, Jacob Beal, Miles Rogers, Daniel Bryce, Robert P. Goldman, Benjamin Keller, Peter Lee, Vanessa Biggers, Joshua Nowak, Mark Weston\",\"doi\":\"https://dl.acm.org/doi/10.1145/3604568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Laboratory protocols are critical to biological research and development, yet difficult to communicate and reproduce across projects, investigators, and organizations. While many attempts have been made to address this challenge, there is currently no available protocol representation that is unambiguous enough for precise interpretation and automation, yet simultaneously “human friendly” and abstract enough to enable reuse and adaptation. The Laboratory Open Protocol language (LabOP) is a free and open protocol representation aiming to address this gap, building on a foundation of UML, Autoprotocol, Aquarium, SBOL RDF, and the Provenance Ontology. LabOP provides a linked-data representation both for protocols and for records of their execution and the resulting data, as well as a framework for exporting from LabOP for execution by either humans or laboratory automation. LabOP is currently implemented in the form of an RDF knowledge representation, specification document, and Python library, and supports execution as manual “paper protocols,” by Autoprotocol or by Opentrons. From this initial implementation, LabOP is being further developed as an open community effort.</p>\",\"PeriodicalId\":50924,\"journal\":{\"name\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"volume\":\"95 2\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3604568\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3604568","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

实验室协议对生物研究和发展至关重要,但在项目、研究者和组织之间难以沟通和复制。虽然已经进行了许多尝试来解决这一挑战,但目前还没有一种可用的协议表示足够明确,可以进行精确的解释和自动化,同时又“对人类友好”,足够抽象,可以进行重用和适应。实验室开放协议语言(LabOP)是一种自由和开放的协议表示,旨在解决这一差距,它建立在UML、Autoprotocol、Aquarium、SBOL RDF和出处本体的基础上。LabOP为协议及其执行记录和结果数据提供了链接数据表示,还提供了从LabOP导出供人工或实验室自动化执行的框架。LabOP目前以RDF知识表示、规范文档和Python库的形式实现,并支持通过Autoprotocol或Opentrons作为手动“纸质协议”执行。从这个最初的实现开始,LabOP作为一个开放社区的努力正在进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building an Open Representation for Biological Protocols

Laboratory protocols are critical to biological research and development, yet difficult to communicate and reproduce across projects, investigators, and organizations. While many attempts have been made to address this challenge, there is currently no available protocol representation that is unambiguous enough for precise interpretation and automation, yet simultaneously “human friendly” and abstract enough to enable reuse and adaptation. The Laboratory Open Protocol language (LabOP) is a free and open protocol representation aiming to address this gap, building on a foundation of UML, Autoprotocol, Aquarium, SBOL RDF, and the Provenance Ontology. LabOP provides a linked-data representation both for protocols and for records of their execution and the resulting data, as well as a framework for exporting from LabOP for execution by either humans or laboratory automation. LabOP is currently implemented in the form of an RDF knowledge representation, specification document, and Python library, and supports execution as manual “paper protocols,” by Autoprotocol or by Opentrons. From this initial implementation, LabOP is being further developed as an open community effort.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems 工程技术-工程:电子与电气
CiteScore
4.80
自引率
4.50%
发文量
86
审稿时长
3 months
期刊介绍: The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system. The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors
期刊最新文献
PUF-Based Digital Money with Propagation-of-Provenance and Offline Transfers Between Two Parties SAT-based Exact Modulo Scheduling Mapping for Resource-Constrained CGRAs Towards practical superconducting accelerators for machine learning using U-SFQ Towards Energy-Efficient Spiking Neural Networks: A Robust Hybrid CMOS-Memristive Accelerator An Analysis of Various Design Pathways Towards Multi-Terabit Photonic On-Interposer Interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1