Pravin Gaikwad, Jonathan Cruz, Prabuddha Chakraborty, Swarup Bhunia, Tamzidul Hoque
{"title":"基于机器学习和后处理的防木马攻击硬件IP保障","authors":"Pravin Gaikwad, Jonathan Cruz, Prabuddha Chakraborty, Swarup Bhunia, Tamzidul Hoque","doi":"https://dl.acm.org/doi/10.1145/3592795","DOIUrl":null,"url":null,"abstract":"<p>System-on-chip (SoC) developers increasingly rely on pre-verified hardware intellectual property (IP) blocks often acquired from untrusted third-party vendors. These IPs might contain hidden malicious functionalities or hardware Trojans that may compromise the security of the fabricated SoCs. Lack of golden or reference models and vast possible Trojan attack space form some of the major barriers in detecting hardware Trojans in these third-party IP (3PIP) blocks. Recently, supervised machine learning (ML) techniques have shown promising capability in identifying nets of potential Trojans in 3PIPs without the need for golden models. However, they bring several major challenges. First, they do not guide us to an optimal choice of features that reliably covers diverse classes of Trojans. Second, they require multiple Trojan-free/trusted designs to insert known Trojans and generate a trained model. Even if a set of trusted designs are available for training, the suspect IP can have an inherently very different structure from the set of trusted designs, which may negatively impact the verification outcome. Third, these techniques only identify a set of suspect Trojan nets that require manual intervention to understand the potential threat. In this article, we present VIPR, a systematic machine learning (ML)-based trust verification solution for 3PIPs that eliminates the need for trusted designs for training. We present a comprehensive framework, associated algorithms, and a tool flow for obtaining an optimal set of features, training a targeted machine learning model, detecting suspect nets, and identifying Trojan circuitry from the suspect nets. We evaluate the framework on several Trust-Hub Trojan benchmarks and provide a comparative analysis of detection performance across different trained models, selection of features, and post-processing techniques. We demonstrate promising Trojan detection accuracy for VIPR with up to 92.85% reduction in false positives by the proposed post-processing algorithm.</p>","PeriodicalId":50924,"journal":{"name":"ACM Journal on Emerging Technologies in Computing Systems","volume":"23 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware IP Assurance against Trojan Attacks with Machine Learning and Post-processing\",\"authors\":\"Pravin Gaikwad, Jonathan Cruz, Prabuddha Chakraborty, Swarup Bhunia, Tamzidul Hoque\",\"doi\":\"https://dl.acm.org/doi/10.1145/3592795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>System-on-chip (SoC) developers increasingly rely on pre-verified hardware intellectual property (IP) blocks often acquired from untrusted third-party vendors. These IPs might contain hidden malicious functionalities or hardware Trojans that may compromise the security of the fabricated SoCs. Lack of golden or reference models and vast possible Trojan attack space form some of the major barriers in detecting hardware Trojans in these third-party IP (3PIP) blocks. Recently, supervised machine learning (ML) techniques have shown promising capability in identifying nets of potential Trojans in 3PIPs without the need for golden models. However, they bring several major challenges. First, they do not guide us to an optimal choice of features that reliably covers diverse classes of Trojans. Second, they require multiple Trojan-free/trusted designs to insert known Trojans and generate a trained model. Even if a set of trusted designs are available for training, the suspect IP can have an inherently very different structure from the set of trusted designs, which may negatively impact the verification outcome. Third, these techniques only identify a set of suspect Trojan nets that require manual intervention to understand the potential threat. In this article, we present VIPR, a systematic machine learning (ML)-based trust verification solution for 3PIPs that eliminates the need for trusted designs for training. We present a comprehensive framework, associated algorithms, and a tool flow for obtaining an optimal set of features, training a targeted machine learning model, detecting suspect nets, and identifying Trojan circuitry from the suspect nets. We evaluate the framework on several Trust-Hub Trojan benchmarks and provide a comparative analysis of detection performance across different trained models, selection of features, and post-processing techniques. We demonstrate promising Trojan detection accuracy for VIPR with up to 92.85% reduction in false positives by the proposed post-processing algorithm.</p>\",\"PeriodicalId\":50924,\"journal\":{\"name\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"volume\":\"23 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal on Emerging Technologies in Computing Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3592795\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Emerging Technologies in Computing Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3592795","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Hardware IP Assurance against Trojan Attacks with Machine Learning and Post-processing
System-on-chip (SoC) developers increasingly rely on pre-verified hardware intellectual property (IP) blocks often acquired from untrusted third-party vendors. These IPs might contain hidden malicious functionalities or hardware Trojans that may compromise the security of the fabricated SoCs. Lack of golden or reference models and vast possible Trojan attack space form some of the major barriers in detecting hardware Trojans in these third-party IP (3PIP) blocks. Recently, supervised machine learning (ML) techniques have shown promising capability in identifying nets of potential Trojans in 3PIPs without the need for golden models. However, they bring several major challenges. First, they do not guide us to an optimal choice of features that reliably covers diverse classes of Trojans. Second, they require multiple Trojan-free/trusted designs to insert known Trojans and generate a trained model. Even if a set of trusted designs are available for training, the suspect IP can have an inherently very different structure from the set of trusted designs, which may negatively impact the verification outcome. Third, these techniques only identify a set of suspect Trojan nets that require manual intervention to understand the potential threat. In this article, we present VIPR, a systematic machine learning (ML)-based trust verification solution for 3PIPs that eliminates the need for trusted designs for training. We present a comprehensive framework, associated algorithms, and a tool flow for obtaining an optimal set of features, training a targeted machine learning model, detecting suspect nets, and identifying Trojan circuitry from the suspect nets. We evaluate the framework on several Trust-Hub Trojan benchmarks and provide a comparative analysis of detection performance across different trained models, selection of features, and post-processing techniques. We demonstrate promising Trojan detection accuracy for VIPR with up to 92.85% reduction in false positives by the proposed post-processing algorithm.
期刊介绍:
The Journal of Emerging Technologies in Computing Systems invites submissions of original technical papers describing research and development in emerging technologies in computing systems. Major economic and technical challenges are expected to impede the continued scaling of semiconductor devices. This has resulted in the search for alternate mechanical, biological/biochemical, nanoscale electronic, asynchronous and quantum computing and sensor technologies. As the underlying nanotechnologies continue to evolve in the labs of chemists, physicists, and biologists, it has become imperative for computer scientists and engineers to translate the potential of the basic building blocks (analogous to the transistor) emerging from these labs into information systems. Their design will face multiple challenges ranging from the inherent (un)reliability due to the self-assembly nature of the fabrication processes for nanotechnologies, from the complexity due to the sheer volume of nanodevices that will have to be integrated for complex functionality, and from the need to integrate these new nanotechnologies with silicon devices in the same system.
The journal provides comprehensive coverage of innovative work in the specification, design analysis, simulation, verification, testing, and evaluation of computing systems constructed out of emerging technologies and advanced semiconductors