{"title":"张量秩分解的一种范式算法","authors":"Simon Telen, Nick Vannieuwenhoven","doi":"https://dl.acm.org/doi/10.1145/3555369","DOIUrl":null,"url":null,"abstract":"<p>We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We characterize the complexity of our algorithm in terms of an algebraic property of this polynomial system—the multigraded regularity. We prove effective bounds for many tensor formats and ranks, which are of independent interest for overconstrained polynomial system solving. Moreover, we conjecture a general formula for the multigraded regularity, yielding a (parameterized) polynomial time complexity for the tensor rank decomposition problem in the considered setting. Our numerical experiments show that our algorithm can outperform state-of-the-art numerical algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"37 ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Normal Form Algorithm for Tensor Rank Decomposition\",\"authors\":\"Simon Telen, Nick Vannieuwenhoven\",\"doi\":\"https://dl.acm.org/doi/10.1145/3555369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We characterize the complexity of our algorithm in terms of an algebraic property of this polynomial system—the multigraded regularity. We prove effective bounds for many tensor formats and ranks, which are of independent interest for overconstrained polynomial system solving. Moreover, we conjecture a general formula for the multigraded regularity, yielding a (parameterized) polynomial time complexity for the tensor rank decomposition problem in the considered setting. Our numerical experiments show that our algorithm can outperform state-of-the-art numerical algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption.</p>\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"37 \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3555369\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3555369","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A Normal Form Algorithm for Tensor Rank Decomposition
We propose a new numerical algorithm for computing the tensor rank decomposition or canonical polyadic decomposition of higher-order tensors subject to a rank and genericity constraint. Reformulating this computational problem as a system of polynomial equations allows us to leverage recent numerical linear algebra tools from computational algebraic geometry. We characterize the complexity of our algorithm in terms of an algebraic property of this polynomial system—the multigraded regularity. We prove effective bounds for many tensor formats and ranks, which are of independent interest for overconstrained polynomial system solving. Moreover, we conjecture a general formula for the multigraded regularity, yielding a (parameterized) polynomial time complexity for the tensor rank decomposition problem in the considered setting. Our numerical experiments show that our algorithm can outperform state-of-the-art numerical algorithms by an order of magnitude in terms of accuracy, computation time, and memory consumption.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.