{"title":"IETF标准化下隐私保护技术的最新趋势","authors":"Pratyush Dikshit, Jayasree Sengupta, Vaibhav Bajpai","doi":"https://dl.acm.org/doi/10.1145/3610381.3610385","DOIUrl":null,"url":null,"abstract":"<p>End-users are concerned about protecting the privacy of their sensitive personal data that are generated while working on information systems. This extends to both the data they actively provide including personal identification in exchange for products and services as well as its related metadata such as unnecessary access to their location. This is when certain privacy-preserving technologies come into a place where Internet Engineering Task Force (IETF) plays a major role in incorporating such technologies at the fundamental level. Thus, this paper offers an overview of the privacy-preserving mechanisms for layer 3 (i.e. IP) and above that are currently under standardization at the IETF. This includes encrypted DNS at layer 5 classified as DNS-over-TLS (DoT), DNS-over-HTTPS (DoH), and DNS-over-QUIC (DoQ) where the underlying technologies like QUIC belong to layer 4. Followed by that, we discuss Privacy Pass Protocol and its application in generating Private Access Tokens and Passkeys to replace passwords for authentication at the application layer (i.e. end-user devices). Lastly, to protect user privacy at the IP level, Private Relays and MASQUE are discussed. This aims to make designers, implementers, and users of the Internet aware of privacy-related design choices.</p>","PeriodicalId":50646,"journal":{"name":"ACM Sigcomm Computer Communication Review","volume":"451 ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Trends on Privacy-Preserving Technologies under Standardization at the IETF\",\"authors\":\"Pratyush Dikshit, Jayasree Sengupta, Vaibhav Bajpai\",\"doi\":\"https://dl.acm.org/doi/10.1145/3610381.3610385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>End-users are concerned about protecting the privacy of their sensitive personal data that are generated while working on information systems. This extends to both the data they actively provide including personal identification in exchange for products and services as well as its related metadata such as unnecessary access to their location. This is when certain privacy-preserving technologies come into a place where Internet Engineering Task Force (IETF) plays a major role in incorporating such technologies at the fundamental level. Thus, this paper offers an overview of the privacy-preserving mechanisms for layer 3 (i.e. IP) and above that are currently under standardization at the IETF. This includes encrypted DNS at layer 5 classified as DNS-over-TLS (DoT), DNS-over-HTTPS (DoH), and DNS-over-QUIC (DoQ) where the underlying technologies like QUIC belong to layer 4. Followed by that, we discuss Privacy Pass Protocol and its application in generating Private Access Tokens and Passkeys to replace passwords for authentication at the application layer (i.e. end-user devices). Lastly, to protect user privacy at the IP level, Private Relays and MASQUE are discussed. This aims to make designers, implementers, and users of the Internet aware of privacy-related design choices.</p>\",\"PeriodicalId\":50646,\"journal\":{\"name\":\"ACM Sigcomm Computer Communication Review\",\"volume\":\"451 \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Sigcomm Computer Communication Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3610381.3610385\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Sigcomm Computer Communication Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3610381.3610385","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Recent Trends on Privacy-Preserving Technologies under Standardization at the IETF
End-users are concerned about protecting the privacy of their sensitive personal data that are generated while working on information systems. This extends to both the data they actively provide including personal identification in exchange for products and services as well as its related metadata such as unnecessary access to their location. This is when certain privacy-preserving technologies come into a place where Internet Engineering Task Force (IETF) plays a major role in incorporating such technologies at the fundamental level. Thus, this paper offers an overview of the privacy-preserving mechanisms for layer 3 (i.e. IP) and above that are currently under standardization at the IETF. This includes encrypted DNS at layer 5 classified as DNS-over-TLS (DoT), DNS-over-HTTPS (DoH), and DNS-over-QUIC (DoQ) where the underlying technologies like QUIC belong to layer 4. Followed by that, we discuss Privacy Pass Protocol and its application in generating Private Access Tokens and Passkeys to replace passwords for authentication at the application layer (i.e. end-user devices). Lastly, to protect user privacy at the IP level, Private Relays and MASQUE are discussed. This aims to make designers, implementers, and users of the Internet aware of privacy-related design choices.
期刊介绍:
Computer Communication Review (CCR) is an online publication of the ACM Special Interest Group on Data Communication (SIGCOMM) and publishes articles on topics within the SIG''s field of interest. Technical papers accepted to CCR typically report on practical advances or the practical applications of theoretical advances. CCR serves as a forum for interesting and novel ideas at an early stage in their development. The focus is on timely dissemination of new ideas that may help trigger additional investigations. While the innovation and timeliness are the major criteria for its acceptance, technical robustness and readability will also be considered in the review process. We particularly encourage papers with early evaluation or feasibility studies.