{"title":"COVID-19大流行的繁殖数预测","authors":"Ryan Benjamin","doi":"10.1186/s13662-023-03792-2","DOIUrl":null,"url":null,"abstract":"<p>The recently derived Hybrid-Incidence Susceptible-Transmissible-Removed (HI-STR) prototype is a deterministic compartment model for epidemics and an alternative to the Susceptible-Infected-Removed (SIR) model. The HI-STR predicts that pathogen transmission depends on host population characteristics including population size, population density and social behaviour common within that population.</p><p>The HI-STR prototype is applied to the ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) to show that the original estimates of the Coronavirus Disease 2019 (COVID-19) basic reproduction number <span>\\(\\mathcal{R}_{0}\\)</span> for the United Kingdom (UK) could have been projected onto the individual states of the United States of America (USA) prior to being detected in the USA.</p><p>The Imperial College London (ICL) group’s estimate of <span>\\(\\mathcal{R}_{0}\\)</span> for the UK is projected onto each USA state. The difference between these projections and the ICL’s estimates for USA states is either not statistically significant on the paired Student <i>t</i>-test or not epidemiologically significant.</p><p>The SARS-CoV2 Delta variant’s <span>\\(\\mathcal{R}_{0}\\)</span> is also projected from the UK to the USA to prove that projection can be applied to a Variant of Concern (VOC). Projection provides both a localised baseline for evaluating the implementation of an intervention policy and a mechanism for anticipating the impact of a VOC before local manifestation.</p>","PeriodicalId":49245,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reproduction number projection for the COVID-19 pandemic\",\"authors\":\"Ryan Benjamin\",\"doi\":\"10.1186/s13662-023-03792-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The recently derived Hybrid-Incidence Susceptible-Transmissible-Removed (HI-STR) prototype is a deterministic compartment model for epidemics and an alternative to the Susceptible-Infected-Removed (SIR) model. The HI-STR predicts that pathogen transmission depends on host population characteristics including population size, population density and social behaviour common within that population.</p><p>The HI-STR prototype is applied to the ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) to show that the original estimates of the Coronavirus Disease 2019 (COVID-19) basic reproduction number <span>\\\\(\\\\mathcal{R}_{0}\\\\)</span> for the United Kingdom (UK) could have been projected onto the individual states of the United States of America (USA) prior to being detected in the USA.</p><p>The Imperial College London (ICL) group’s estimate of <span>\\\\(\\\\mathcal{R}_{0}\\\\)</span> for the UK is projected onto each USA state. The difference between these projections and the ICL’s estimates for USA states is either not statistically significant on the paired Student <i>t</i>-test or not epidemiologically significant.</p><p>The SARS-CoV2 Delta variant’s <span>\\\\(\\\\mathcal{R}_{0}\\\\)</span> is also projected from the UK to the USA to prove that projection can be applied to a Variant of Concern (VOC). Projection provides both a localised baseline for evaluating the implementation of an intervention policy and a mechanism for anticipating the impact of a VOC before local manifestation.</p>\",\"PeriodicalId\":49245,\"journal\":{\"name\":\"Advances in Difference Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Difference Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-023-03792-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-023-03792-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Reproduction number projection for the COVID-19 pandemic
The recently derived Hybrid-Incidence Susceptible-Transmissible-Removed (HI-STR) prototype is a deterministic compartment model for epidemics and an alternative to the Susceptible-Infected-Removed (SIR) model. The HI-STR predicts that pathogen transmission depends on host population characteristics including population size, population density and social behaviour common within that population.
The HI-STR prototype is applied to the ancestral Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) to show that the original estimates of the Coronavirus Disease 2019 (COVID-19) basic reproduction number \(\mathcal{R}_{0}\) for the United Kingdom (UK) could have been projected onto the individual states of the United States of America (USA) prior to being detected in the USA.
The Imperial College London (ICL) group’s estimate of \(\mathcal{R}_{0}\) for the UK is projected onto each USA state. The difference between these projections and the ICL’s estimates for USA states is either not statistically significant on the paired Student t-test or not epidemiologically significant.
The SARS-CoV2 Delta variant’s \(\mathcal{R}_{0}\) is also projected from the UK to the USA to prove that projection can be applied to a Variant of Concern (VOC). Projection provides both a localised baseline for evaluating the implementation of an intervention policy and a mechanism for anticipating the impact of a VOC before local manifestation.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.