{"title":"嗜热菌HB8中SpeB的ph依赖性构象稳定性:来自分子动力学模拟的见解","authors":"Malaisamy Veerapandian, Nagarajan Hemavathy, Alagesan Karthika, Jayaraman Manikandan, Umashankar Vetrivel, Jeyaraman Jeyakanthan","doi":"10.1080/08927022.2023.2281987","DOIUrl":null,"url":null,"abstract":"N(1)-aminopropyl agmatine ureohydrolase (SpeB) is considered an essential enzyme for the growth and survival of thermophiles, it is involved in the biosynthesis of polyamines. The present study inv...","PeriodicalId":18863,"journal":{"name":"Molecular Simulation","volume":"228 ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH-Dependent conformational stability of SpeB from Thermus thermophilus HB8: insights from molecular dynamics simulation\",\"authors\":\"Malaisamy Veerapandian, Nagarajan Hemavathy, Alagesan Karthika, Jayaraman Manikandan, Umashankar Vetrivel, Jeyaraman Jeyakanthan\",\"doi\":\"10.1080/08927022.2023.2281987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"N(1)-aminopropyl agmatine ureohydrolase (SpeB) is considered an essential enzyme for the growth and survival of thermophiles, it is involved in the biosynthesis of polyamines. The present study inv...\",\"PeriodicalId\":18863,\"journal\":{\"name\":\"Molecular Simulation\",\"volume\":\"228 \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Simulation\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/08927022.2023.2281987\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Simulation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/08927022.2023.2281987","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
pH-Dependent conformational stability of SpeB from Thermus thermophilus HB8: insights from molecular dynamics simulation
N(1)-aminopropyl agmatine ureohydrolase (SpeB) is considered an essential enzyme for the growth and survival of thermophiles, it is involved in the biosynthesis of polyamines. The present study inv...
期刊介绍:
Molecular Simulation covers all aspects of research related to, or of importance to, molecular modelling and simulation.
Molecular Simulation brings together the most significant papers concerned with applications of simulation methods, and original contributions to the development of simulation methodology from biology, biochemistry, chemistry, engineering, materials science, medicine and physics.
The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.
Molecular Simulation is of interest to all researchers using or developing simulation methods based on statistical mechanics/quantum mechanics. This includes molecular dynamics (MD, AIMD), Monte Carlo, ab initio methods related to simulation, multiscale and coarse graining methods.