R. S. Bagge, C. Foster, A. Battisti, S. Bellstedt, M. Mun, K. Harborne, S. Barsanti, T. Mendel, S. Brough, S.M. Croom, C.D.P. Lagos, T. Mukherjee, Y. Peng, R-S. Remus, G. Santucci, P. Sharda, S. Thater, J. van de Sande, L. M. Valenzuela, E. Wisnioski, T. Zafar, B. Ziegler
{"title":"MAGPI调查:z ~ 0.3恒星形成星系电离气体运动不对称性的驱动因素","authors":"R. S. Bagge, C. Foster, A. Battisti, S. Bellstedt, M. Mun, K. Harborne, S. Barsanti, T. Mendel, S. Brough, S.M. Croom, C.D.P. Lagos, T. Mukherjee, Y. Peng, R-S. Remus, G. Santucci, P. Sharda, S. Thater, J. van de Sande, L. M. Valenzuela, E. Wisnioski, T. Zafar, B. Ziegler","doi":"10.1017/pasa.2023.58","DOIUrl":null,"url":null,"abstract":"Galaxy gas kinematics are sensitive to the physical processes that contribute to a galaxy’s evolution. It is expected that external processes will cause more significant kinematic disturbances in the outer regions, while internal processes will cause more disturbances for the inner regions. Using a subsample of 47 galaxies (0.27 < <jats:italic>z</jats:italic> < 0.36) from the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, we conduct a study into the source of kinematic disturbances by measuring the asymmetry present in the ionised gas line-of-sight velocity maps at the 0.5<jats:italic>Re</jats:italic> (inner regions) and 1.5<jats:italic>Re</jats:italic> (outer regions) elliptical annuli. By comparing the inner and outer kinematic asymmetries, we aim to better understand what physical processes are driving the asymmetries in galaxies. We find the local environment plays a role in kinematic disturbance, in agreement with other integral field spectroscopy studies of the local universe, with most asymmetric systems being in close proximity to a more massive neighbour. We do not find evidence suggesting that hosting an Active Galactic Nucleus (AGN) contributes to asymmetry within the inner regions, with some caveats due to emission line modelling. In contrast to previous studies, we do not find evidence that processes leading to asymmetry also enhance star formation in MAGPI galaxies. Finally, we find a weak anti-correlation between stellar mass and asymmetry (ie. high stellar mass galaxies are less asymmetric). We conclude by discussing possible sources driving the asymmetry in the ionised gas, such as disturbances being present in the colder gas phase (either molecular or atomic) prior to the gas being ionised, and non-axisymmetric features (e.g., a bar) being present in the galactic disk. Our results highlight the complex interplay between ionised gas kinematic disturbances and physical processes involved in galaxy evolution.","PeriodicalId":20753,"journal":{"name":"Publications of the Astronomical Society of Australia","volume":"134 3","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The MAGPI Survey: Drivers of kinematic asymmetries in the ionised gas of z ∼ 0.3 star-forming galaxies\",\"authors\":\"R. S. Bagge, C. Foster, A. Battisti, S. Bellstedt, M. Mun, K. Harborne, S. Barsanti, T. Mendel, S. Brough, S.M. Croom, C.D.P. Lagos, T. Mukherjee, Y. Peng, R-S. Remus, G. Santucci, P. Sharda, S. Thater, J. van de Sande, L. M. Valenzuela, E. Wisnioski, T. Zafar, B. Ziegler\",\"doi\":\"10.1017/pasa.2023.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Galaxy gas kinematics are sensitive to the physical processes that contribute to a galaxy’s evolution. It is expected that external processes will cause more significant kinematic disturbances in the outer regions, while internal processes will cause more disturbances for the inner regions. Using a subsample of 47 galaxies (0.27 < <jats:italic>z</jats:italic> < 0.36) from the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, we conduct a study into the source of kinematic disturbances by measuring the asymmetry present in the ionised gas line-of-sight velocity maps at the 0.5<jats:italic>Re</jats:italic> (inner regions) and 1.5<jats:italic>Re</jats:italic> (outer regions) elliptical annuli. By comparing the inner and outer kinematic asymmetries, we aim to better understand what physical processes are driving the asymmetries in galaxies. We find the local environment plays a role in kinematic disturbance, in agreement with other integral field spectroscopy studies of the local universe, with most asymmetric systems being in close proximity to a more massive neighbour. We do not find evidence suggesting that hosting an Active Galactic Nucleus (AGN) contributes to asymmetry within the inner regions, with some caveats due to emission line modelling. In contrast to previous studies, we do not find evidence that processes leading to asymmetry also enhance star formation in MAGPI galaxies. Finally, we find a weak anti-correlation between stellar mass and asymmetry (ie. high stellar mass galaxies are less asymmetric). We conclude by discussing possible sources driving the asymmetry in the ionised gas, such as disturbances being present in the colder gas phase (either molecular or atomic) prior to the gas being ionised, and non-axisymmetric features (e.g., a bar) being present in the galactic disk. Our results highlight the complex interplay between ionised gas kinematic disturbances and physical processes involved in galaxy evolution.\",\"PeriodicalId\":20753,\"journal\":{\"name\":\"Publications of the Astronomical Society of Australia\",\"volume\":\"134 3\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/pasa.2023.58\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Australia","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/pasa.2023.58","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The MAGPI Survey: Drivers of kinematic asymmetries in the ionised gas of z ∼ 0.3 star-forming galaxies
Galaxy gas kinematics are sensitive to the physical processes that contribute to a galaxy’s evolution. It is expected that external processes will cause more significant kinematic disturbances in the outer regions, while internal processes will cause more disturbances for the inner regions. Using a subsample of 47 galaxies (0.27 < z < 0.36) from the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, we conduct a study into the source of kinematic disturbances by measuring the asymmetry present in the ionised gas line-of-sight velocity maps at the 0.5Re (inner regions) and 1.5Re (outer regions) elliptical annuli. By comparing the inner and outer kinematic asymmetries, we aim to better understand what physical processes are driving the asymmetries in galaxies. We find the local environment plays a role in kinematic disturbance, in agreement with other integral field spectroscopy studies of the local universe, with most asymmetric systems being in close proximity to a more massive neighbour. We do not find evidence suggesting that hosting an Active Galactic Nucleus (AGN) contributes to asymmetry within the inner regions, with some caveats due to emission line modelling. In contrast to previous studies, we do not find evidence that processes leading to asymmetry also enhance star formation in MAGPI galaxies. Finally, we find a weak anti-correlation between stellar mass and asymmetry (ie. high stellar mass galaxies are less asymmetric). We conclude by discussing possible sources driving the asymmetry in the ionised gas, such as disturbances being present in the colder gas phase (either molecular or atomic) prior to the gas being ionised, and non-axisymmetric features (e.g., a bar) being present in the galactic disk. Our results highlight the complex interplay between ionised gas kinematic disturbances and physical processes involved in galaxy evolution.
期刊介绍:
Publications of the Astronomical Society of Australia (PASA) publishes new and significant research in astronomy and astrophysics. PASA covers a wide range of topics within astronomy, including multi-wavelength observations, theoretical modelling, computational astronomy and visualisation. PASA also maintains its heritage of publishing results on southern hemisphere astronomy and on astronomy with Australian facilities.
PASA publishes research papers, review papers and special series on topical issues, making use of expert international reviewers and an experienced Editorial Board. As an electronic-only journal, PASA publishes paper by paper, ensuring a rapid publication rate. There are no page charges. PASA''s Editorial Board approve a certain number of papers per year to be published Open Access without a publication fee.