{"title":"草酸盐与芳基溴的氧化还原-中性脱羧交偶联","authors":"Akash Bisoyi, Vijay Kumar Simhadri, Surya K, Rositha Kuniyil* and Veera Reddy Yatham*, ","doi":"10.1021/acsorginorgau.3c00053","DOIUrl":null,"url":null,"abstract":"<p >Dual nickel-photoredox-enabled direct synthesis of amides through cross-coupling of cesium oxamates with aryl bromides has been developed. This methodology’s key advantages are mild reaction conditions, utilizing organic dye as a photocatalyst, employing readily available starting chemicals as coupling partners, and late-stage carbamoylation of pharmaceutically relevant molecules. DFT studies suggested that the nickel catalytic cycle proceeds via a radical addition pathway prior to the oxidative insertion.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00053","citationCount":"0","resultStr":"{\"title\":\"Redox-Neutral Decarboxylative Cross-Coupling of Oxamates with Aryl Bromides\",\"authors\":\"Akash Bisoyi, Vijay Kumar Simhadri, Surya K, Rositha Kuniyil* and Veera Reddy Yatham*, \",\"doi\":\"10.1021/acsorginorgau.3c00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dual nickel-photoredox-enabled direct synthesis of amides through cross-coupling of cesium oxamates with aryl bromides has been developed. This methodology’s key advantages are mild reaction conditions, utilizing organic dye as a photocatalyst, employing readily available starting chemicals as coupling partners, and late-stage carbamoylation of pharmaceutically relevant molecules. DFT studies suggested that the nickel catalytic cycle proceeds via a radical addition pathway prior to the oxidative insertion.</p>\",\"PeriodicalId\":29797,\"journal\":{\"name\":\"ACS Organic & Inorganic Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00053\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Organic & Inorganic Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsorginorgau.3c00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.3c00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Redox-Neutral Decarboxylative Cross-Coupling of Oxamates with Aryl Bromides
Dual nickel-photoredox-enabled direct synthesis of amides through cross-coupling of cesium oxamates with aryl bromides has been developed. This methodology’s key advantages are mild reaction conditions, utilizing organic dye as a photocatalyst, employing readily available starting chemicals as coupling partners, and late-stage carbamoylation of pharmaceutically relevant molecules. DFT studies suggested that the nickel catalytic cycle proceeds via a radical addition pathway prior to the oxidative insertion.
期刊介绍:
ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.