HINOTORI:星系复兴的本质

IF 2.2 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Publications of the Astronomical Society of Japan Pub Date : 2023-11-28 DOI:10.1093/pasj/psad076
Takumi S Tanaka, Kazuhiro Shimasaku, Sandro Tacchella, Makoto Ando, Kei Ito, Hassen M Yesuf, Suin Matsui
{"title":"HINOTORI:星系复兴的本质","authors":"Takumi S Tanaka, Kazuhiro Shimasaku, Sandro Tacchella, Makoto Ando, Kei Ito, Hassen M Yesuf, Suin Matsui","doi":"10.1093/pasj/psad076","DOIUrl":null,"url":null,"abstract":"We present the HINOTORI (Star Formation History Investigation To Find Rejuvenation) project to reveal the nature of rejuvenation galaxies (RGs), which are galaxies that restarted their star formation after being quiescent. As the first step of HINOTORI, we construct the largest RG sample with 1071 sources. We select these RGs from 8857 MaNGA (Mapping Nearby Galaxies at APO) survey galaxies by reconstructing their star formation histories with the Prospector spectral energy distribution fitting code. Both optical spectral data and UV to IR photometric data are used for the fitting. Using mock data, we confirm that our method can detect weak rejuvenation events that form only about $0.1$% of the total stellar mass with high completeness. The RGs account for ${\\sim}10$% of the whole sample, and rejuvenation events contribute on average only about $0.1$% of the total stellar mass in those galaxies but $17$% of the cosmic star formation rate density today. Our RGs have a similar mass distribution to quiescent galaxies (QGs). However, the morphology of the RGs is more disk-like than QGs, suggesting that rejuvenation may occur selectively in disk-like QGs. Our results also suggest the possibility of multiple-time rejuvenation events in a single galaxy. Further spatially resolved analyses of integral field unit data and radio observations and comparisons to simulations are needed to identify the mechanism and the role of rejuvenation in galaxy evolution.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":"17 6","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HINOTORI I: The nature of rejuvenation galaxies\",\"authors\":\"Takumi S Tanaka, Kazuhiro Shimasaku, Sandro Tacchella, Makoto Ando, Kei Ito, Hassen M Yesuf, Suin Matsui\",\"doi\":\"10.1093/pasj/psad076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the HINOTORI (Star Formation History Investigation To Find Rejuvenation) project to reveal the nature of rejuvenation galaxies (RGs), which are galaxies that restarted their star formation after being quiescent. As the first step of HINOTORI, we construct the largest RG sample with 1071 sources. We select these RGs from 8857 MaNGA (Mapping Nearby Galaxies at APO) survey galaxies by reconstructing their star formation histories with the Prospector spectral energy distribution fitting code. Both optical spectral data and UV to IR photometric data are used for the fitting. Using mock data, we confirm that our method can detect weak rejuvenation events that form only about $0.1$% of the total stellar mass with high completeness. The RGs account for ${\\\\sim}10$% of the whole sample, and rejuvenation events contribute on average only about $0.1$% of the total stellar mass in those galaxies but $17$% of the cosmic star formation rate density today. Our RGs have a similar mass distribution to quiescent galaxies (QGs). However, the morphology of the RGs is more disk-like than QGs, suggesting that rejuvenation may occur selectively in disk-like QGs. Our results also suggest the possibility of multiple-time rejuvenation events in a single galaxy. Further spatially resolved analyses of integral field unit data and radio observations and comparisons to simulations are needed to identify the mechanism and the role of rejuvenation in galaxy evolution.\",\"PeriodicalId\":20733,\"journal\":{\"name\":\"Publications of the Astronomical Society of Japan\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of Japan\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/pasj/psad076\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/pasj/psad076","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了HINOTORI(恒星形成历史调查寻找复兴)项目,以揭示复兴星系(RGs)的本质,这些星系是在静止后重新开始恒星形成的星系。作为HINOTORI的第一步,我们构建了包含1071个源的最大RG样本。我们从8857 MaNGA(在APO绘制邻近星系)调查星系中选择了这些RGs,通过使用Prospector光谱能量分布拟合代码重建它们的恒星形成历史。光谱数据和紫外至红外光度数据都用于拟合。利用模拟数据,我们证实了我们的方法可以检测到仅占恒星总质量约0.1 %的微弱返老还老事件,并且完整性很高。RGs占整个样本的10.0%,而在这些星系中,返青事件平均只占总恒星质量的0.1%左右,但却占今天宇宙恒星形成率密度的17.0%。我们的静止星系(qg)的质量分布与静止星系(qg)相似。然而,RGs的形态比QGs更像盘状,这表明在盘状QGs中可能选择性地发生年轻化。我们的研究结果还表明,在单个星系中可能存在多次返老还老的事件。需要进一步的空间分辨分析和射电观测数据,并与模拟进行比较,以确定星系演化中返老还老的机制和作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HINOTORI I: The nature of rejuvenation galaxies
We present the HINOTORI (Star Formation History Investigation To Find Rejuvenation) project to reveal the nature of rejuvenation galaxies (RGs), which are galaxies that restarted their star formation after being quiescent. As the first step of HINOTORI, we construct the largest RG sample with 1071 sources. We select these RGs from 8857 MaNGA (Mapping Nearby Galaxies at APO) survey galaxies by reconstructing their star formation histories with the Prospector spectral energy distribution fitting code. Both optical spectral data and UV to IR photometric data are used for the fitting. Using mock data, we confirm that our method can detect weak rejuvenation events that form only about $0.1$% of the total stellar mass with high completeness. The RGs account for ${\sim}10$% of the whole sample, and rejuvenation events contribute on average only about $0.1$% of the total stellar mass in those galaxies but $17$% of the cosmic star formation rate density today. Our RGs have a similar mass distribution to quiescent galaxies (QGs). However, the morphology of the RGs is more disk-like than QGs, suggesting that rejuvenation may occur selectively in disk-like QGs. Our results also suggest the possibility of multiple-time rejuvenation events in a single galaxy. Further spatially resolved analyses of integral field unit data and radio observations and comparisons to simulations are needed to identify the mechanism and the role of rejuvenation in galaxy evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Publications of the Astronomical Society of Japan
Publications of the Astronomical Society of Japan 地学天文-天文与天体物理
CiteScore
4.10
自引率
13.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: Publications of the Astronomical Society of Japan (PASJ) publishes the results of original research in all aspects of astronomy, astrophysics, and fields closely related to them.
期刊最新文献
Low abundances of TiO and VO on the dayside of KELT-9 b: Insights from ground-based photometric observations Plasma diagnostics of supernova remnant 3C 400.2 by Suzaku observations Giant molecular clouds and their type classification in M 74: Toward understanding star formation and cloud evolution ACA CO(J = 2–1) mapping of the nearest spiral galaxy M 33. II. Exploring the evolution of giant molecular clouds MK-like spectral classification for hot subdwarf stars with LAMOST spectra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1