Benjamin Charles Germain Lee, Doug Downey, Kyle Lo, Daniel S. Weld
{"title":"莱姆德:从人工智能解释到建议采纳","authors":"Benjamin Charles Germain Lee, Doug Downey, Kyle Lo, Daniel S. Weld","doi":"https://dl.acm.org/doi/10.1145/3589345","DOIUrl":null,"url":null,"abstract":"<p>Research in human-centered AI has shown the benefits of systems that can explain their predictions. Methods that allow an AI to take advice from humans in response to explanations are similarly useful. While both capabilities are well-developed for <i>transparent</i> learning models (e.g., linear models and GA<sup>2</sup>Ms), and recent techniques (e.g., LIME and SHAP) can generate explanations for <i>opaque</i> models, little attention has been given to advice methods for opaque models. This paper introduces LIMEADE, the first general framework that translates both positive and negative advice (expressed using high-level vocabulary such as that employed by post-hoc explanations) into an update to an arbitrary, underlying opaque model. We demonstrate the generality of our approach with case studies on seventy real-world models across two broad domains: image classification and text recommendation. We show our method improves accuracy compared to a rigorous baseline on the image classification domains. For the text modality, we apply our framework to a neural recommender system for scientific papers on a public website; our user study shows that our framework leads to significantly higher perceived user control, trust, and satisfaction.</p>","PeriodicalId":48574,"journal":{"name":"ACM Transactions on Interactive Intelligent Systems","volume":"52 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LIMEADE: From AI Explanations to Advice Taking\",\"authors\":\"Benjamin Charles Germain Lee, Doug Downey, Kyle Lo, Daniel S. Weld\",\"doi\":\"https://dl.acm.org/doi/10.1145/3589345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Research in human-centered AI has shown the benefits of systems that can explain their predictions. Methods that allow an AI to take advice from humans in response to explanations are similarly useful. While both capabilities are well-developed for <i>transparent</i> learning models (e.g., linear models and GA<sup>2</sup>Ms), and recent techniques (e.g., LIME and SHAP) can generate explanations for <i>opaque</i> models, little attention has been given to advice methods for opaque models. This paper introduces LIMEADE, the first general framework that translates both positive and negative advice (expressed using high-level vocabulary such as that employed by post-hoc explanations) into an update to an arbitrary, underlying opaque model. We demonstrate the generality of our approach with case studies on seventy real-world models across two broad domains: image classification and text recommendation. We show our method improves accuracy compared to a rigorous baseline on the image classification domains. For the text modality, we apply our framework to a neural recommender system for scientific papers on a public website; our user study shows that our framework leads to significantly higher perceived user control, trust, and satisfaction.</p>\",\"PeriodicalId\":48574,\"journal\":{\"name\":\"ACM Transactions on Interactive Intelligent Systems\",\"volume\":\"52 5\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Interactive Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3589345\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Interactive Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3589345","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Research in human-centered AI has shown the benefits of systems that can explain their predictions. Methods that allow an AI to take advice from humans in response to explanations are similarly useful. While both capabilities are well-developed for transparent learning models (e.g., linear models and GA2Ms), and recent techniques (e.g., LIME and SHAP) can generate explanations for opaque models, little attention has been given to advice methods for opaque models. This paper introduces LIMEADE, the first general framework that translates both positive and negative advice (expressed using high-level vocabulary such as that employed by post-hoc explanations) into an update to an arbitrary, underlying opaque model. We demonstrate the generality of our approach with case studies on seventy real-world models across two broad domains: image classification and text recommendation. We show our method improves accuracy compared to a rigorous baseline on the image classification domains. For the text modality, we apply our framework to a neural recommender system for scientific papers on a public website; our user study shows that our framework leads to significantly higher perceived user control, trust, and satisfaction.
期刊介绍:
The ACM Transactions on Interactive Intelligent Systems (TiiS) publishes papers on research concerning the design, realization, or evaluation of interactive systems that incorporate some form of machine intelligence. TIIS articles come from a wide range of research areas and communities. An article can take any of several complementary views of interactive intelligent systems, focusing on:
the intelligent technology,
the interaction of users with the system, or
both aspects at once.