在视觉分析中使用降维和聚类组合来处理模糊交互和推断用户意图

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-04-17 DOI:https://dl.acm.org/doi/10.1145/3588565
John Wenskovitch, Michelle Dowling, Chris North
{"title":"在视觉分析中使用降维和聚类组合来处理模糊交互和推断用户意图","authors":"John Wenskovitch, Michelle Dowling, Chris North","doi":"https://dl.acm.org/doi/10.1145/3588565","DOIUrl":null,"url":null,"abstract":"<p>Direct manipulation interactions on projections are often incorporated in visual analytics applications. These interactions enable analysts to provide incremental feedback to the system in a semi-supervised manner, demonstrating relationships that the analyst wishes to find within the data. However, determining the precise intent of the analyst is a challenge. When an analyst interacts with a projection, the inherent ambiguity of interactions can lead to a variety of possible interpretations that the system can infer. Previous work has demonstrated the utility of clusters as an interaction target to address this “With Respect to What” problem in dimension-reduced projections. However, the introduction of clusters introduces interaction inference challenges as well. In this work, we discuss the interaction space for the simultaneous use of semi-supervised dimension reduction and clustering algorithms. We introduce a novel pipeline representation to disambiguate between interactions on observations and clusters, as well as which underlying model is responding to those analyst interactions. We use a prototype visual analytics tool to demonstrate the effects of these ambiguous interactions, their properties, and the insights that an analyst can glean from each.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Addressing Ambiguous Interactions and Inferring User Intent with Dimension Reduction and Clustering Combinations in Visual Analytics\",\"authors\":\"John Wenskovitch, Michelle Dowling, Chris North\",\"doi\":\"https://dl.acm.org/doi/10.1145/3588565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Direct manipulation interactions on projections are often incorporated in visual analytics applications. These interactions enable analysts to provide incremental feedback to the system in a semi-supervised manner, demonstrating relationships that the analyst wishes to find within the data. However, determining the precise intent of the analyst is a challenge. When an analyst interacts with a projection, the inherent ambiguity of interactions can lead to a variety of possible interpretations that the system can infer. Previous work has demonstrated the utility of clusters as an interaction target to address this “With Respect to What” problem in dimension-reduced projections. However, the introduction of clusters introduces interaction inference challenges as well. In this work, we discuss the interaction space for the simultaneous use of semi-supervised dimension reduction and clustering algorithms. We introduce a novel pipeline representation to disambiguate between interactions on observations and clusters, as well as which underlying model is responding to those analyst interactions. We use a prototype visual analytics tool to demonstrate the effects of these ambiguous interactions, their properties, and the insights that an analyst can glean from each.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3588565\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3588565","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

投影上的直接操作交互通常被纳入可视化分析应用程序中。这些交互使分析人员能够以半监督的方式向系统提供增量反馈,展示分析人员希望在数据中找到的关系。然而,确定分析师的确切意图是一个挑战。当分析人员与投影交互时,交互的固有模糊性可能导致系统可以推断的各种可能的解释。以前的工作已经证明了集群作为一个交互目标的效用,以解决在降维投影中“关于什么”的问题。然而,集群的引入也带来了交互推理的挑战。在这项工作中,我们讨论了同时使用半监督降维和聚类算法的交互空间。我们引入了一种新的管道表示来消除观察和集群交互之间的歧义,以及哪个底层模型响应这些分析交互。我们使用一个原型可视化分析工具来演示这些模糊交互的影响、它们的属性,以及分析人员可以从中收集到的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Addressing Ambiguous Interactions and Inferring User Intent with Dimension Reduction and Clustering Combinations in Visual Analytics

Direct manipulation interactions on projections are often incorporated in visual analytics applications. These interactions enable analysts to provide incremental feedback to the system in a semi-supervised manner, demonstrating relationships that the analyst wishes to find within the data. However, determining the precise intent of the analyst is a challenge. When an analyst interacts with a projection, the inherent ambiguity of interactions can lead to a variety of possible interpretations that the system can infer. Previous work has demonstrated the utility of clusters as an interaction target to address this “With Respect to What” problem in dimension-reduced projections. However, the introduction of clusters introduces interaction inference challenges as well. In this work, we discuss the interaction space for the simultaneous use of semi-supervised dimension reduction and clustering algorithms. We introduce a novel pipeline representation to disambiguate between interactions on observations and clusters, as well as which underlying model is responding to those analyst interactions. We use a prototype visual analytics tool to demonstrate the effects of these ambiguous interactions, their properties, and the insights that an analyst can glean from each.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1