EDAssistant:支持探索性数据分析在计算笔记本与原位代码搜索和推荐

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-03-09 DOI:https://dl.acm.org/doi/10.1145/3545995
Xingjun Li, Yizhi Zhang, Justin Leung, Chengnian Sun, Jian Zhao
{"title":"EDAssistant:支持探索性数据分析在计算笔记本与原位代码搜索和推荐","authors":"Xingjun Li, Yizhi Zhang, Justin Leung, Chengnian Sun, Jian Zhao","doi":"https://dl.acm.org/doi/10.1145/3545995","DOIUrl":null,"url":null,"abstract":"<p>Using computational notebooks (e.g., Jupyter Notebook), data scientists rationalize their exploratory data analysis (EDA) based on their prior experience and external knowledge, such as online examples. For novices or data scientists who lack specific knowledge about the dataset or problem to investigate, effectively obtaining and understanding the external information is critical to carrying out EDA. This article presents EDAssistant, a JupyterLab extension that supports EDA with in situ search of example notebooks and recommendation of useful APIs, powered by novel interactive visualization of search results. The code search and recommendation are enabled by advanced machine learning models, trained on a large corpus of EDA notebooks collected online. A user study is conducted to investigate both EDAssistant and data scientists’ current practice (i.e., using external search engines). The results demonstrate the effectiveness and usefulness of EDAssistant, and participants appreciated its smooth and in-context support of EDA. We also report several design implications regarding code recommendation tools.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EDAssistant: Supporting Exploratory Data Analysis in Computational Notebooks with In Situ Code Search and Recommendation\",\"authors\":\"Xingjun Li, Yizhi Zhang, Justin Leung, Chengnian Sun, Jian Zhao\",\"doi\":\"https://dl.acm.org/doi/10.1145/3545995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using computational notebooks (e.g., Jupyter Notebook), data scientists rationalize their exploratory data analysis (EDA) based on their prior experience and external knowledge, such as online examples. For novices or data scientists who lack specific knowledge about the dataset or problem to investigate, effectively obtaining and understanding the external information is critical to carrying out EDA. This article presents EDAssistant, a JupyterLab extension that supports EDA with in situ search of example notebooks and recommendation of useful APIs, powered by novel interactive visualization of search results. The code search and recommendation are enabled by advanced machine learning models, trained on a large corpus of EDA notebooks collected online. A user study is conducted to investigate both EDAssistant and data scientists’ current practice (i.e., using external search engines). The results demonstrate the effectiveness and usefulness of EDAssistant, and participants appreciated its smooth and in-context support of EDA. We also report several design implications regarding code recommendation tools.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3545995\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3545995","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

使用计算笔记本(例如,Jupyter Notebook),数据科学家根据他们先前的经验和外部知识(例如在线示例)合理化他们的探索性数据分析(EDA)。对于缺乏关于数据集或要调查的问题的具体知识的新手或数据科学家来说,有效地获取和理解外部信息对于执行EDA至关重要。本文介绍了EDAssistant,这是一个JupyterLab扩展,它通过对示例笔记本的原位搜索和有用api的推荐来支持EDA,并通过新颖的交互式搜索结果可视化提供支持。代码搜索和推荐是由先进的机器学习模型实现的,这些模型是在在线收集的大量EDA笔记本语料库上训练的。进行用户研究,以调查EDAssistant和数据科学家目前的做法(即使用外部搜索引擎)。结果显示了EDAssistant的有效性和实用性,与会者对其对EDA的流畅和上下文支持表示赞赏。我们还报告了一些关于代码推荐工具的设计含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EDAssistant: Supporting Exploratory Data Analysis in Computational Notebooks with In Situ Code Search and Recommendation

Using computational notebooks (e.g., Jupyter Notebook), data scientists rationalize their exploratory data analysis (EDA) based on their prior experience and external knowledge, such as online examples. For novices or data scientists who lack specific knowledge about the dataset or problem to investigate, effectively obtaining and understanding the external information is critical to carrying out EDA. This article presents EDAssistant, a JupyterLab extension that supports EDA with in situ search of example notebooks and recommendation of useful APIs, powered by novel interactive visualization of search results. The code search and recommendation are enabled by advanced machine learning models, trained on a large corpus of EDA notebooks collected online. A user study is conducted to investigate both EDAssistant and data scientists’ current practice (i.e., using external search engines). The results demonstrate the effectiveness and usefulness of EDAssistant, and participants appreciated its smooth and in-context support of EDA. We also report several design implications regarding code recommendation tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1