适当显示演算的句法完备性

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Computational Logic Pub Date : 2022-10-20 DOI:https://dl.acm.org/doi/10.1145/3529255
Jinsheng Chen, Giuseppe Greco, Alessandra Palmigiano, Apostolos Tzimoulis
{"title":"适当显示演算的句法完备性","authors":"Jinsheng Chen, Giuseppe Greco, Alessandra Palmigiano, Apostolos Tzimoulis","doi":"https://dl.acm.org/doi/10.1145/3529255","DOIUrl":null,"url":null,"abstract":"<p>A recent strand of research in structural proof theory aims at exploring the notion of <i>analytic calculi</i> (i.e., those calculi that support general and modular proof-strategies for cut elimination) and at identifying classes of logics that can be captured in terms of these calculi. In this context, Wansing introduced the notion of <i>proper display calculi</i> as one possible design framework for proof calculi in which the analyticity desiderata are realized in a particularly transparent way. Recently, the theory of <i>properly displayable</i> logics (i.e., those logics that can be equivalently presented with some proper display calculus) has been developed in connection with generalized Sahlqvist theory (a.k.a. unified correspondence). Specifically, properly displayable logics have been syntactically characterized as those axiomatized by <i>analytic inductive axioms</i>, which can be equivalently and algorithmically transformed into analytic structural rules so the resulting proper display calculi enjoy a set of basic properties: soundness, completeness, conservativity, cut elimination, and the subformula property. In this context, the proof that the given calculus is <i>complete</i> w.r.t. the original logic is usually carried out <i>syntactically</i>, i.e., by showing that a (cut-free) derivation exists of each given axiom of the logic in the basic system to which the analytic structural rules algorithmically generated from the given axiom have been added. However, so far, this proof strategy for <i>syntactic completeness</i> has been implemented on a case-by-case base and not in general. In this article, we address this gap by proving syntactic completeness for properly displayable logics in any normal (distributive) lattice expansion signature. Specifically, we show that for every analytic inductive axiom a cut-free derivation can be effectively generated that has a specific shape, referred to as <i>pre-normal form</i>.</p>","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syntactic Completeness of Proper Display Calculi\",\"authors\":\"Jinsheng Chen, Giuseppe Greco, Alessandra Palmigiano, Apostolos Tzimoulis\",\"doi\":\"https://dl.acm.org/doi/10.1145/3529255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A recent strand of research in structural proof theory aims at exploring the notion of <i>analytic calculi</i> (i.e., those calculi that support general and modular proof-strategies for cut elimination) and at identifying classes of logics that can be captured in terms of these calculi. In this context, Wansing introduced the notion of <i>proper display calculi</i> as one possible design framework for proof calculi in which the analyticity desiderata are realized in a particularly transparent way. Recently, the theory of <i>properly displayable</i> logics (i.e., those logics that can be equivalently presented with some proper display calculus) has been developed in connection with generalized Sahlqvist theory (a.k.a. unified correspondence). Specifically, properly displayable logics have been syntactically characterized as those axiomatized by <i>analytic inductive axioms</i>, which can be equivalently and algorithmically transformed into analytic structural rules so the resulting proper display calculi enjoy a set of basic properties: soundness, completeness, conservativity, cut elimination, and the subformula property. In this context, the proof that the given calculus is <i>complete</i> w.r.t. the original logic is usually carried out <i>syntactically</i>, i.e., by showing that a (cut-free) derivation exists of each given axiom of the logic in the basic system to which the analytic structural rules algorithmically generated from the given axiom have been added. However, so far, this proof strategy for <i>syntactic completeness</i> has been implemented on a case-by-case base and not in general. In this article, we address this gap by proving syntactic completeness for properly displayable logics in any normal (distributive) lattice expansion signature. Specifically, we show that for every analytic inductive axiom a cut-free derivation can be effectively generated that has a specific shape, referred to as <i>pre-normal form</i>.</p>\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3529255\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3529255","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

最近在结构证明理论方面的一项研究旨在探索解析演算的概念(即,那些支持切消的一般和模证明策略的演算),并确定可以根据这些演算捕获的逻辑类。在这种背景下,Wansing引入了适当显示演算的概念,作为证明演算的一种可能的设计框架,其中所需的分析性以一种特别透明的方式实现。近年来,在广义Sahlqvist理论(又称统一对应)的基础上,发展了适当显示逻辑理论(即那些可以用某种适当显示演算等价表示的逻辑)。具体地说,适当显示的逻辑在句法上被表征为由解析归纳公理公理化的逻辑,这些公理可以等价地和算法地转化为解析结构规则,从而得到适当显示的演算具有一组基本性质:健全性、完备性、保守性、切消性和子公式性质。在这种情况下,证明给定的演算是完全的,而不是原始的逻辑,通常是在句法上进行的,即,通过表明在基本系统中逻辑的每个给定公理的(无切割)推导存在,该基本系统已添加了由给定公理算法生成的分析结构规则。然而,到目前为止,这种语法完整性的证明策略是在逐个案例的基础上实现的,而不是一般的。在本文中,我们通过证明任何正态(分布)格展开签名中正确显示逻辑的语法完备性来解决这一差距。具体地说,我们证明了对于每个解析归纳公理,可以有效地生成具有特定形状的无切割导数,称为前范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Syntactic Completeness of Proper Display Calculi

A recent strand of research in structural proof theory aims at exploring the notion of analytic calculi (i.e., those calculi that support general and modular proof-strategies for cut elimination) and at identifying classes of logics that can be captured in terms of these calculi. In this context, Wansing introduced the notion of proper display calculi as one possible design framework for proof calculi in which the analyticity desiderata are realized in a particularly transparent way. Recently, the theory of properly displayable logics (i.e., those logics that can be equivalently presented with some proper display calculus) has been developed in connection with generalized Sahlqvist theory (a.k.a. unified correspondence). Specifically, properly displayable logics have been syntactically characterized as those axiomatized by analytic inductive axioms, which can be equivalently and algorithmically transformed into analytic structural rules so the resulting proper display calculi enjoy a set of basic properties: soundness, completeness, conservativity, cut elimination, and the subformula property. In this context, the proof that the given calculus is complete w.r.t. the original logic is usually carried out syntactically, i.e., by showing that a (cut-free) derivation exists of each given axiom of the logic in the basic system to which the analytic structural rules algorithmically generated from the given axiom have been added. However, so far, this proof strategy for syntactic completeness has been implemented on a case-by-case base and not in general. In this article, we address this gap by proving syntactic completeness for properly displayable logics in any normal (distributive) lattice expansion signature. Specifically, we show that for every analytic inductive axiom a cut-free derivation can be effectively generated that has a specific shape, referred to as pre-normal form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Computational Logic
ACM Transactions on Computational Logic 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI). Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages. The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field. Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.
期刊最新文献
Computationally Hard Problems for Logic Programs under Answer Set Semantics Fundamental Logic is Decidable SAT Modulo Symmetries for Graph Generation and Enumeration Strong Backdoors for Default Logic One or Nothing: Anti-unification over the Simply-Typed Lambda Calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1