{"title":"深入了解ZGC: OpenJDK中的现代垃圾收集器","authors":"Albert Mingkun Yang, Tobias Wrigstad","doi":"https://dl.acm.org/doi/10.1145/3538532","DOIUrl":null,"url":null,"abstract":"<p>ZGC is a modern, non-generational, region-based, mostly concurrent, parallel, mark-evacuate collector recently added to OpenJDK. It aims at having GC pauses that do not grow as the heap size increases, offering low latency even with large heap sizes. The ZGC C++ source code is readily accessible in the OpenJDK repository, but reading it (25 KLOC) can be very intimidating, and one might easily get lost in low-level implementation details, obscuring the key concepts. To make the ZGC algorithm more approachable, this work provides a thorough description on a high-level, focusing on the overall design with moderate implementation details. To explain the concurrency aspects, we provide a SPIN model that allows studying races between mutators and GC threads, and how they are resolved in ZGC. Such a model is not only useful for learning the current design (offering a deterministic and interactive experience) but also beneficial for prototyping new ideas and extensions. Our hope is that our detailed description and the SPIN model will enable the use of ZGC as a building block for future GC research, and research ideas implemented on top of it could even be adopted in the industry more readily, bridging the gap between academia and industry in the context of GC research.</p>","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"258 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Dive into ZGC: A Modern Garbage Collector in OpenJDK\",\"authors\":\"Albert Mingkun Yang, Tobias Wrigstad\",\"doi\":\"https://dl.acm.org/doi/10.1145/3538532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>ZGC is a modern, non-generational, region-based, mostly concurrent, parallel, mark-evacuate collector recently added to OpenJDK. It aims at having GC pauses that do not grow as the heap size increases, offering low latency even with large heap sizes. The ZGC C++ source code is readily accessible in the OpenJDK repository, but reading it (25 KLOC) can be very intimidating, and one might easily get lost in low-level implementation details, obscuring the key concepts. To make the ZGC algorithm more approachable, this work provides a thorough description on a high-level, focusing on the overall design with moderate implementation details. To explain the concurrency aspects, we provide a SPIN model that allows studying races between mutators and GC threads, and how they are resolved in ZGC. Such a model is not only useful for learning the current design (offering a deterministic and interactive experience) but also beneficial for prototyping new ideas and extensions. Our hope is that our detailed description and the SPIN model will enable the use of ZGC as a building block for future GC research, and research ideas implemented on top of it could even be adopted in the industry more readily, bridging the gap between academia and industry in the context of GC research.</p>\",\"PeriodicalId\":50939,\"journal\":{\"name\":\"ACM Transactions on Programming Languages and Systems\",\"volume\":\"258 12\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Programming Languages and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/https://dl.acm.org/doi/10.1145/3538532\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3538532","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Deep Dive into ZGC: A Modern Garbage Collector in OpenJDK
ZGC is a modern, non-generational, region-based, mostly concurrent, parallel, mark-evacuate collector recently added to OpenJDK. It aims at having GC pauses that do not grow as the heap size increases, offering low latency even with large heap sizes. The ZGC C++ source code is readily accessible in the OpenJDK repository, but reading it (25 KLOC) can be very intimidating, and one might easily get lost in low-level implementation details, obscuring the key concepts. To make the ZGC algorithm more approachable, this work provides a thorough description on a high-level, focusing on the overall design with moderate implementation details. To explain the concurrency aspects, we provide a SPIN model that allows studying races between mutators and GC threads, and how they are resolved in ZGC. Such a model is not only useful for learning the current design (offering a deterministic and interactive experience) but also beneficial for prototyping new ideas and extensions. Our hope is that our detailed description and the SPIN model will enable the use of ZGC as a building block for future GC research, and research ideas implemented on top of it could even be adopted in the industry more readily, bridging the gap between academia and industry in the context of GC research.
期刊介绍:
ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects:
language design for sequential and parallel programming
programming language implementation
programming language semantics
compilers and interpreters
runtime systems for program execution
storage allocation and garbage collection
languages and methods for writing program specifications
languages and methods for secure and reliable programs
testing and verification of programs