{"title":"压电风扇-平动搅拌器组合冷却系统的传热分析","authors":"Rutuja Ramachandra Bilaskar, Abhishek Singh, Sripriya Ramamoorthy, Shankar Krishnan","doi":"10.1615/jenhheattransf.2023049372","DOIUrl":null,"url":null,"abstract":"This paper investigates the heat transfer characteristics of a channel system consisting of a finned heat sink and two piezoelectric devices, the piezoelectric fan (PF) and the piezoelectric translational agitator (PTA), both experimentally and computationally. In the proposed system, the mean flow is generated by a cantilevered PF, and the flow between the fins is agitated using a PTA. A single channel system consisting of a PTA, the PF, and two fins is analyzed numerically using ANSYS Fluent software after validating numerical predictions against experimental measurements. The effect of design variables such as frequency ratio, phase difference, PF's tip distance from PTA, and squeezing fraction is explored. A PTA increases the heat transfer from the heated surfaces without incrementally aiding in the mass flow rate. Velocity and temperature fields are plotted to understand the physics of the system for one complete cycle of a PTA blade. The concept of total Reynolds number that incorporates the effect of both axial and transverse fluid flow is used in this study. The Nusselt number increases with an increment in the total Reynolds number. It is noted that the integration of the PF and the PTA with the finned heat sink system has enhanced the heat transfer coefficient by 76.88% compared to the system with PTA and by 30.92% as compared to the system with the PF only.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Transfer Analysis of a Combined Piezoelectric Fan -Translational Agitator Cooling System\",\"authors\":\"Rutuja Ramachandra Bilaskar, Abhishek Singh, Sripriya Ramamoorthy, Shankar Krishnan\",\"doi\":\"10.1615/jenhheattransf.2023049372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the heat transfer characteristics of a channel system consisting of a finned heat sink and two piezoelectric devices, the piezoelectric fan (PF) and the piezoelectric translational agitator (PTA), both experimentally and computationally. In the proposed system, the mean flow is generated by a cantilevered PF, and the flow between the fins is agitated using a PTA. A single channel system consisting of a PTA, the PF, and two fins is analyzed numerically using ANSYS Fluent software after validating numerical predictions against experimental measurements. The effect of design variables such as frequency ratio, phase difference, PF's tip distance from PTA, and squeezing fraction is explored. A PTA increases the heat transfer from the heated surfaces without incrementally aiding in the mass flow rate. Velocity and temperature fields are plotted to understand the physics of the system for one complete cycle of a PTA blade. The concept of total Reynolds number that incorporates the effect of both axial and transverse fluid flow is used in this study. The Nusselt number increases with an increment in the total Reynolds number. It is noted that the integration of the PF and the PTA with the finned heat sink system has enhanced the heat transfer coefficient by 76.88% compared to the system with PTA and by 30.92% as compared to the system with the PF only.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/jenhheattransf.2023049372\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jenhheattransf.2023049372","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Heat Transfer Analysis of a Combined Piezoelectric Fan -Translational Agitator Cooling System
This paper investigates the heat transfer characteristics of a channel system consisting of a finned heat sink and two piezoelectric devices, the piezoelectric fan (PF) and the piezoelectric translational agitator (PTA), both experimentally and computationally. In the proposed system, the mean flow is generated by a cantilevered PF, and the flow between the fins is agitated using a PTA. A single channel system consisting of a PTA, the PF, and two fins is analyzed numerically using ANSYS Fluent software after validating numerical predictions against experimental measurements. The effect of design variables such as frequency ratio, phase difference, PF's tip distance from PTA, and squeezing fraction is explored. A PTA increases the heat transfer from the heated surfaces without incrementally aiding in the mass flow rate. Velocity and temperature fields are plotted to understand the physics of the system for one complete cycle of a PTA blade. The concept of total Reynolds number that incorporates the effect of both axial and transverse fluid flow is used in this study. The Nusselt number increases with an increment in the total Reynolds number. It is noted that the integration of the PF and the PTA with the finned heat sink system has enhanced the heat transfer coefficient by 76.88% compared to the system with PTA and by 30.92% as compared to the system with the PF only.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.