Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, Pranabendu Misra
{"title":"通过彩虹循环数提高嫉妒自由度","authors":"Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, Pranabendu Misra","doi":"10.1287/moor.2021.0252","DOIUrl":null,"url":null,"abstract":"We study the problem of fairly allocating a set of indivisible goods among n agents with additive valuations. Envy freeness up to any good (EFX) is arguably the most compelling fairness notion in this context. However, the existence of an EFX allocation has not been settled and is one of the most important problems in fair division. Toward resolving this question, many impressive results show the existence of its relaxations. In particular, it is known that 0.618-EFX allocations exist and that EFX allocation exists if we do not allocate at most (n-1) goods. Reducing the number of unallocated goods has emerged as a systematic way to tackle the main question. For example, follow-up works on three- and four-agents cases, respectively, allocated two more unallocated goods through an involved procedure. In this paper, we study the general case and achieve sublinear numbers of unallocated goods. Through a new approach, we show that for every [Formula: see text], there always exists a [Formula: see text]-EFX allocation with sublinear number of unallocated goods and high Nash welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory. We define the notion of rainbow cycle number [Formula: see text] in directed graphs. For all [Formula: see text] is the largest k such that there exists a k-partite graph [Formula: see text], in which each part has at most d vertices (i.e., [Formula: see text] for all [Formula: see text]); for any two parts V<jats:sub>i</jats:sub> and V<jats:sub>j</jats:sub>, each vertex in V<jats:sub>i</jats:sub> has an incoming edge from some vertex in V<jats:sub>j</jats:sub> and vice versa; and there exists no cycle in G that contains at most one vertex from each part. We show that any upper bound on [Formula: see text] directly translates to a sublinear bound on the number of unallocated goods. We establish a polynomial upper bound on [Formula: see text], yielding our main result. Furthermore, our approach is constructive, which also gives a polynomial-time algorithm for finding such an allocation.Funding: J. Garg was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1942321]. R. Mehta was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1750436].","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"232 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Envy Freeness up to Any Good Guarantees Through Rainbow Cycle Number\",\"authors\":\"Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn, Ruta Mehta, Pranabendu Misra\",\"doi\":\"10.1287/moor.2021.0252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of fairly allocating a set of indivisible goods among n agents with additive valuations. Envy freeness up to any good (EFX) is arguably the most compelling fairness notion in this context. However, the existence of an EFX allocation has not been settled and is one of the most important problems in fair division. Toward resolving this question, many impressive results show the existence of its relaxations. In particular, it is known that 0.618-EFX allocations exist and that EFX allocation exists if we do not allocate at most (n-1) goods. Reducing the number of unallocated goods has emerged as a systematic way to tackle the main question. For example, follow-up works on three- and four-agents cases, respectively, allocated two more unallocated goods through an involved procedure. In this paper, we study the general case and achieve sublinear numbers of unallocated goods. Through a new approach, we show that for every [Formula: see text], there always exists a [Formula: see text]-EFX allocation with sublinear number of unallocated goods and high Nash welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory. We define the notion of rainbow cycle number [Formula: see text] in directed graphs. For all [Formula: see text] is the largest k such that there exists a k-partite graph [Formula: see text], in which each part has at most d vertices (i.e., [Formula: see text] for all [Formula: see text]); for any two parts V<jats:sub>i</jats:sub> and V<jats:sub>j</jats:sub>, each vertex in V<jats:sub>i</jats:sub> has an incoming edge from some vertex in V<jats:sub>j</jats:sub> and vice versa; and there exists no cycle in G that contains at most one vertex from each part. We show that any upper bound on [Formula: see text] directly translates to a sublinear bound on the number of unallocated goods. We establish a polynomial upper bound on [Formula: see text], yielding our main result. Furthermore, our approach is constructive, which also gives a polynomial-time algorithm for finding such an allocation.Funding: J. Garg was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1942321]. R. Mehta was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1750436].\",\"PeriodicalId\":49852,\"journal\":{\"name\":\"Mathematics of Operations Research\",\"volume\":\"232 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Operations Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2021.0252\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2021.0252","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Improving Envy Freeness up to Any Good Guarantees Through Rainbow Cycle Number
We study the problem of fairly allocating a set of indivisible goods among n agents with additive valuations. Envy freeness up to any good (EFX) is arguably the most compelling fairness notion in this context. However, the existence of an EFX allocation has not been settled and is one of the most important problems in fair division. Toward resolving this question, many impressive results show the existence of its relaxations. In particular, it is known that 0.618-EFX allocations exist and that EFX allocation exists if we do not allocate at most (n-1) goods. Reducing the number of unallocated goods has emerged as a systematic way to tackle the main question. For example, follow-up works on three- and four-agents cases, respectively, allocated two more unallocated goods through an involved procedure. In this paper, we study the general case and achieve sublinear numbers of unallocated goods. Through a new approach, we show that for every [Formula: see text], there always exists a [Formula: see text]-EFX allocation with sublinear number of unallocated goods and high Nash welfare. For this, we reduce the EFX problem to a novel problem in extremal graph theory. We define the notion of rainbow cycle number [Formula: see text] in directed graphs. For all [Formula: see text] is the largest k such that there exists a k-partite graph [Formula: see text], in which each part has at most d vertices (i.e., [Formula: see text] for all [Formula: see text]); for any two parts Vi and Vj, each vertex in Vi has an incoming edge from some vertex in Vj and vice versa; and there exists no cycle in G that contains at most one vertex from each part. We show that any upper bound on [Formula: see text] directly translates to a sublinear bound on the number of unallocated goods. We establish a polynomial upper bound on [Formula: see text], yielding our main result. Furthermore, our approach is constructive, which also gives a polynomial-time algorithm for finding such an allocation.Funding: J. Garg was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1942321]. R. Mehta was supported by the Directorate for Computer and Information Science and Engineering [Grant CCF-1750436].
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.