{"title":"鲁棒预测模型的迭代重加权多元线性偏最小二乘建模","authors":"Puneet Mishra, Kristian Hovde Liland","doi":"10.1002/cem.3527","DOIUrl":null,"url":null,"abstract":"<p>Higher order data are commonly encountered in the domain of chemometrics, often generated by advanced analytical instruments. Due to the multilinear nature of the data, higher order data require different regression approaches compared with traditional two-way data for predictive modelling. The main aim is usually to extract the rich multilinear information, which is often lost if the data are simply analysed in unfolded form. A common algorithm for multilinear predictive modelling is N-way partial least squares (NPLS). However, a limitation of NPLS is that it inherently does not handle outlying observations, which can be detrimental to the model. This work presents a new robust multilinear predictive modelling approach based on iterative down-weighting of the outlier observations in both predictor and response space. A key benefit of the method is that it only requires a single extra parameter to tune. In this work, the algorithm is described, and the method is demonstrated on three real multilinear data sets. In all cases, the presented method outperformed the traditional NPLS modelling regarding the root mean squared error of prediction.</p>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"38 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3527","citationCount":"0","resultStr":"{\"title\":\"Iterative re-weighted multilinear partial least squares modelling for robust predictive modelling\",\"authors\":\"Puneet Mishra, Kristian Hovde Liland\",\"doi\":\"10.1002/cem.3527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Higher order data are commonly encountered in the domain of chemometrics, often generated by advanced analytical instruments. Due to the multilinear nature of the data, higher order data require different regression approaches compared with traditional two-way data for predictive modelling. The main aim is usually to extract the rich multilinear information, which is often lost if the data are simply analysed in unfolded form. A common algorithm for multilinear predictive modelling is N-way partial least squares (NPLS). However, a limitation of NPLS is that it inherently does not handle outlying observations, which can be detrimental to the model. This work presents a new robust multilinear predictive modelling approach based on iterative down-weighting of the outlier observations in both predictor and response space. A key benefit of the method is that it only requires a single extra parameter to tune. In this work, the algorithm is described, and the method is demonstrated on three real multilinear data sets. In all cases, the presented method outperformed the traditional NPLS modelling regarding the root mean squared error of prediction.</p>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cem.3527\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.3527\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.3527","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
Iterative re-weighted multilinear partial least squares modelling for robust predictive modelling
Higher order data are commonly encountered in the domain of chemometrics, often generated by advanced analytical instruments. Due to the multilinear nature of the data, higher order data require different regression approaches compared with traditional two-way data for predictive modelling. The main aim is usually to extract the rich multilinear information, which is often lost if the data are simply analysed in unfolded form. A common algorithm for multilinear predictive modelling is N-way partial least squares (NPLS). However, a limitation of NPLS is that it inherently does not handle outlying observations, which can be detrimental to the model. This work presents a new robust multilinear predictive modelling approach based on iterative down-weighting of the outlier observations in both predictor and response space. A key benefit of the method is that it only requires a single extra parameter to tune. In this work, the algorithm is described, and the method is demonstrated on three real multilinear data sets. In all cases, the presented method outperformed the traditional NPLS modelling regarding the root mean squared error of prediction.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.